Analysis of Factors Affecting the Preparation of Mullite Whiskers from Silica-Rich Slag and Application Studies
Abstract
:1. Introduction
2. Experimental Section
2.1. Raw Materials and Reagents
- Aluminum-rich silica slag, Zibo, China, Zongxiao Technology New Material Co.;
- Aluminum sulfate, analytically pure, Beijing, China, Beijing Kono Chemical Co., Ltd.;
- Aluminum fluoride, sodium sulfate, and aluminum hydroxide, analytically pure, Shanghai, China, Shanghai McLean Biochemical Technology Co.;
- Silicon Carbide, Anhydrous Ethanol and Deionized Water, St. Louis, MO, USA, Sigma-Aldrich Co.
2.2. Laboratory Instruments
2.3. Sample Preparation
2.3.1. Mullite Whisker Preparation
2.3.2. Whisker-Toughened Ceramic Composite Preparation
2.4. Preparation Mechanism Analysis
2.4.1. Mullite Whisker Growth Mechanism
2.4.2. Whisker-Toughened Ceramic Composite Material Mechanism
3. Results and Discussion
3.1. Effect of Different Molten Salt Systems
3.2. Effects of Different Reaction Temperatures
3.3. Effects of Different Catalyst Additions
3.4. Effect of Heating Holding Time
3.5. Effect of Temperature Rise Rate
3.6. Effects of Different Additives on Toughening Properties of Ceramics
4. Conclusions
- Compared to the molten salt system of aluminum hydroxide, the molten salt system of aluminum-sulfate-prepared mullite whiskers showed a purer crystal phase, no excess impurity phase, and a large aspect ratio.
- The effects of different reaction temperatures, catalyst additions, heating holding times, and temperature rise rates in the same molten salt system were considered. Among these, the effects of different reaction temperatures, catalyst additions, and heating holding times on the aspect ratio of mullite whiskers showed a tendency of increasing and then decreasing. The temperature rise rate had a positive effect on the growth of mullite whiskers, but the effect was not obvious when the temperature rise rate exceeded 5 °C/min.
- To benefit economic costs, the aluminum sulfate molten salt system was selected, the aluminum fluoride catalyst addition was set at 4%, and the preparation temperature was raised to 850 °C at a temperature increase rate of 5 °C/min before being held for 5 h. The aspect ratio reached 20.64.
- The toughening effect of mullite whiskers on ceramics was obvious—the optimal addition of mullite whiskers is suggested to be more than 3 wt. %. Compared with those of ceramics without mullite whiskers, the toughness strength was enhanced by more than 16.5%, and the wear rate was reduced by 36.61% to a value lower than 0.4%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Souza, W.; Pereira, M.; Oliveira, L. Amphiphilic catalysts based on onion-like carbon over magnetic iron oxide for petrochemical industry use. Fuel 2012, 96, 604–607. [Google Scholar] [CrossRef]
- Altynov, A.; Bogdanov, I.; Lukyanov, D.; Kirgina, M. Natural Gas Liquids into Motor Gasolines: Methodology for Processing on a Zeolite Catalyst and Development of Blending Recipes. ChemEngineering 2023, 7, 93. [Google Scholar] [CrossRef]
- Yang, C.; Cui, L. Endeavors on the development of efficient and sustainable supported metal catalysts for chemical synthesis on solid–liquid interfaces. Green Energy Environ. 2023, 8, 1–3. [Google Scholar] [CrossRef]
- Burmana, A.; Tambun, R.; Haryanto, B.; Sarah, M.; Alexander, V. Recycling heterogeneous catalyst waste in biodiesel production using methanol and hydrochloric acid: A case study on the washing effect with lauric acid as raw material. Case Stud. Chem. Environ. Eng. 2023, 8, 100510. [Google Scholar] [CrossRef]
- Lei, G.; Niu, Y.; Hu, J.; Ju, S.; Gu, Y.; Tan, W. A New Process for Efficient Recovery of Rhodium from Spent Carbonyl Rhodium Catalyst by Microreactor. Materials 2023, 16, 6271. [Google Scholar] [CrossRef]
- Sayehi, M.; Tounsi, H.; Garbarino, G.; Riani, P.; Busca, G. Reutilization of silicon- and aluminum- containing wastes in the perspective of the preparation of SiO2-Al2O3 based porous materials for adsorbents and catalysts. Waste Manag. 2020, 103, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Christian, D.; Hagedorn, T.; Campitelli, A.; Bulach, W.; Zeller, V. Are LCA Studies on Bulk Mineral Waste Management Suitable for Decision Support? A Critical Review. Sustainability 2021, 13, 4686. [Google Scholar] [CrossRef]
- Huang, T.; Tang, Y.; Sun, Y.; Zhang, C.; Ma, X. Life cycle environmental and economic comparison of thermal utilization of refuse derived fuel manufactured from landfilled waste or fresh waste. J. Environ. Manag. 2022, 304, 114156. [Google Scholar] [CrossRef]
- Yoldi, M.; Fuentes-Ordoñez, E.; Korili, S.; Gil, A. Zeolite synthesis from aluminum saline slag waste. Powder Technol. 2020, 366, 175–184. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Zhao, Z.; Yang, Q.; Qin, L.; Zhang, K.; Wang, X.; Su, N.; Wen, T.; Yuan, L. Preparation of Self-Coating Al2O3 Bonded SiAlON Porous Ceramics Using Aluminum Dross and Silicon Solid Waste under Ambient Air Atmosphere. Materials 2023, 16, 5679. [Google Scholar] [CrossRef]
- Peng, B.; Ding, X.; Zhao, Y.; Deng, X.; Wang, D.; Jin, X.; Ran, S. Preparation of mullite whiskers from high alumina fly ash and its reinforced porous structure. J. Mater. Res. Technol. 2023, 24, 3323–3333. [Google Scholar] [CrossRef]
- Tan, H. Preparation of mullite whiskers from coal fly ash using sodium sulfate flux. Int. J. Miner. Process. 2011, 100, 188–189. [Google Scholar] [CrossRef]
- Gu, X.; Zhu, Y.; Liu, S.; Zhu, S.; Liu, Y. Preparation of Mullite/PU Nanocomposites by Double Waste Co-Recycling. Sustainability 2022, 14, 14310. [Google Scholar] [CrossRef]
- Cui, K.; Zhang, Y.; Fu, T.; Wang, J.; Zhang, X. Toughening Mechanism of Mullite Matrix Composites: A Review. Coatings 2020, 10, 672. [Google Scholar] [CrossRef]
- Avram, P.; Imbrea, M.; Istrate, B.; Strugaru, S.; Benchea, M.; Munteanu, C. Properties of Al2O3 and NiAlSi coatings obtained by atmospheric plasma spraying on 34CrNiMo6. Substrate 2014, 21, 315–321. Available online: http://nopr.niscpr.res.in/handle/123456789/28993 (accessed on 4 December 2023).
- Liu, H.; Xiong, X.; Li, M.; Wang, Z.; Wang, X.; Ma, Y.; Yuan, L. Fabrication and properties of mullite thermal insulation materials with in-situ synthesized mullite hollow whiskers. Ceram. Int. 2020, 46, 14474–14480. [Google Scholar] [CrossRef]
- Naseri, M.; Omidkhah, M. Optimizing the fabrication conditions of monolithic mullite whisker membrane from kaolin and bauxite using the Taguchi method. Ceram. Int. 2023, 49, 23612–23626. [Google Scholar] [CrossRef]
- Karhu, M.; Lagerbom, J.; Solismaa, S.; Honkanen, M.; Ismailov, A.; Räisänen, M.; Huttunen-Saarivirta, E.; Levänen, E.; Kivikytö-Reponen, P. Mining tailings as raw materials for reaction-sintered aluminosilicate ceramics: Effect of mineralogical composition on microstructure and properties. Ceram. Int. 2019, 45, 4840–4848. [Google Scholar] [CrossRef]
- Ji, H.; Fang, M.; Huang, Z.; Chen, K.; Xu, Y.; Liu, Y.; Huang, J. Effect of La2O3 additives on the strength and microstructure of mullite ceramics obtained from coal gangue and γ-Al2O3. Ceram. Int. 2013, 39, 6841–6846. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, S.; Zhang, Z.; Zhong, M.; Li, Y.; Huang, X.; Xu, W.; Wang, D.; Wang, L. The effect of phosphorus on the formation of mullite whiskers from citric acid activated kaolin. Ceram. Int. 2018, 44, 18796–18802. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, C.; Liu, G.; Qiao, G. Molten salt synthesis of mullite whiskers on the surface of SiC ceramics. J. Alloys Compd. 2014, 582, 96–100. [Google Scholar] [CrossRef]
- Liu, S.; Liu, J.; Du, H.; Hou, F.; Guo, A. Microstructure of mullite fiber-based hierarchical structures adjusted by Al/Si mole ratio of the raw material powders. Ceram. Int. 2014, 40, 11405–11410. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Tong, L.; Feng, W. Phase evolution and dynamics of cerium-doped mullite whiskers synthesized by sol–gel process. Ceram. Int. 2013, 39, 9677–9681. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Wu, J.; Zhang, C.; Zhou, S.; Wu, C. Fabrication and characterization of porous mullite ceramics with ultra-low shrinkage and high porosity via sol-gel and solid state reaction methods. Ceram. Int. 2021, 47, 20141–20150. [Google Scholar] [CrossRef]
- Dong, Y.; Hampshire, S.; Zhou, J.; Lin, B.; Ji, Z.; Zhang, X.; Meng, G. Recycling of fly ash for preparing porous mullite membrane supports with titania addition. J. Hazard. Mater. 2010, 180, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Huang, H.; Zhang, T.; Ma, J.; Boey, F.; Zhang, R.; Wang, Z. Growth of mullite whiskers in mechanochemically activated oxides doped with WO3. J. Eur. Ceram. Soc. 2003, 23, 2257–2264. [Google Scholar] [CrossRef]
- Li, J.; Ma, H.; Huang, W. Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite. J. Hazard. Mater. 2009, 166, 1535–1539. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Jiang, F.; Jiang, W.; Liu, J.; Zhang, Q.; Wu, Q.; Hu, Q.; Miao, L. Novel facile nonaqueous precipitation in-situ synthesis of mullite whisker skeleton porous materials. Ceram. Int. 2018, 44, 22904–22910. [Google Scholar] [CrossRef]
- Fabio, V.; Edward, R.J.; Freddy, V.; Lizeth, A.P.; Jhoman, A.; Esperanza, L.; Guillermo, L.; Gloria, D. Solid-state synthesis of mullite from spent catalysts for manufacturing refractory brick coatings. Ceram. Int. 2018, 44, 3556–3562. [Google Scholar] [CrossRef]
- Li, J.; Ge, S.; Yuan, G.; Zhang, H.; Zhang, J.; He, J.; Jia, Q.; Zhang, S. Effects of V2O5 addition on the synthesis of columnar self-reinforced mullite porous ceramics. Ceram. Int. 2021, 47, 11240–11248. [Google Scholar] [CrossRef]
- Sahraoui, T.; Belhouchet, H.; Heraiz, M.; Brihi, N.; Guermat, A. The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder. Ceram. Int. 2016, 42, 12185–12193. [Google Scholar] [CrossRef]
- Kim, B.; Cho, Y.; Yoon, S.; Stevens, R.; Park, H. TMullite whiskers derived from kaolin. Ceram. Int. 2009, 35, 579–583. [Google Scholar] [CrossRef]
- Guo, A.; Tian, L.; Niu, F. Preparation of mullite whiskers from blueschist. Nanotechnology 2013, 10, 42–46. Available online: http://www.cqvip.com/qk/88139x/201305/47886930.html (accessed on 4 December 2023).
- Karamian, Y.; Monshi, A.; Bataille, A.; Zadhoush, A. Formation of nano SiC whiskers in bauxite–carbon composite materials and their consequences on strength and density. J. Eur. Ceram. Soc. 2011, 31, 2677–2685. [Google Scholar] [CrossRef]
- Park, Y.; Yang, T.; Yoon, S.; Stevens, R.; Park, H. Mullite whiskers derived from coal fly ash. Mater. Sci. Eng. A 2007, 454–455, 518–522. [Google Scholar] [CrossRef]
- Fu, J.; Sun, S.; Wang, J.; Fu, Q.; Wang, X.; Wang, D.; Li, S. Mullite whisker-constructed ceramic membranes prepared from fly ash by in-situ catalytic reaction. Mater. Chem. Phys. 2023, 308, 128280. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, J.; Du, H.; Li, Z.; Li, S.; Li, S.; Xu, R. Molten salt synthesis of mullite whiskers from various alumina precursors. J. Alloys Compd. 2010, 491, 447–451. [Google Scholar] [CrossRef]
- Wang, W.; Hou, G.; Wang, B.; Deng, S. Preparation of biomorphic silicon carbide–mullite ceramics using molten salt synthesis. Mater. Chem. Phys. 2014, 147, 198–203. [Google Scholar] [CrossRef]
- Wang, M.; Feng, Z.; Zhai, C.; Zhang, J.; Li, Z.; Zhang, H.; Xu, X. Low-temperature in-situ grown mullite whiskers toughened heat-resistant inorganic adhesive. J. Alloys Compd. 2020, 836, 155349. [Google Scholar] [CrossRef]
- Li, W.; Pang, T.; Liu, H.; Wang, C.; Li, M.; He, X.; He, F. Lightweight and thermal insulation mullite fibers/whiskers hierarchical framework materials: Low-temperature in-situ growth method and mechanism. J. Eur. Ceram. Soc. 2022, 42, 5984–5994. [Google Scholar] [CrossRef]
- Mohammed, R.; Ummen, S.; Logesh, G.; Srishilan, C.; Mangesh, L.; Anand, J.; Balasubramanian, M. Mullite phase evolution in clay with hydrated or anhydrous AlF3. J. Eur. Ceram. Soc. 2020, 40, 5974–5983. [Google Scholar] [CrossRef]
- Wang, W.; Li, H.; Lai, K.; Du, K. Preparation and characterization of mullite whiskers from silica fume by using a low temperature molten salt method. J. Alloys Compd. 2012, 510, 92–96. [Google Scholar] [CrossRef]
- Chen, P.; Gu, X.; Liu, S.; Zhu, S.; Wang, T.; Zhu, Y.; Fan, A.; Liu, Y. Industrial waste silica-alumina gel recycling: Low-temperature synthesis of mullite whiskers for mass production. Ceram. Int. 2023, 49, 9442–9451. [Google Scholar] [CrossRef]
- Amanmyrat, A.; Celal, A.; Tobias, F.; André, H.; Markus, O.; Ingo, M.; Laura, M.; Aleksander, G.; Maged, F. Fabrication and characterization of porous mullite ceramics derived from fluoride-assisted Metakaolin-Al(OH)3 annealing for filtration applications. Open Ceram. 2022, 9, 100240. [Google Scholar] [CrossRef]
- Gu, X.; Chen, P.; Wang, T.; Liu, S.; Zhu, S.; Zhu, Y.; Liu, Y. Analysis of Influencing Factors in the Preparation of Mullite Whiskers from Recovering Silicon-Rich Waste under Low-Temperature Conditions. Nanomaterials 2023, 13, 1143. [Google Scholar] [CrossRef]
Ingredients (wt. %) | Content Percentage |
---|---|
Al2O3 | 28.7 |
SiO2 | 49.4 |
Na2O | 17.2 |
SO3 | 4.5 |
Other trace oxides | 0.2 |
Proportions of Raw Materials | Mass Ratio |
---|---|
Aluminum-rich silica slag | 10 |
Catalysts | 1.7 |
Molten salt-based raw materials | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Gu, X.; Liu, S.; Liu, Y. Analysis of Factors Affecting the Preparation of Mullite Whiskers from Silica-Rich Slag and Application Studies. Materials 2023, 16, 7633. https://doi.org/10.3390/ma16247633
Zhu S, Gu X, Liu S, Liu Y. Analysis of Factors Affecting the Preparation of Mullite Whiskers from Silica-Rich Slag and Application Studies. Materials. 2023; 16(24):7633. https://doi.org/10.3390/ma16247633
Chicago/Turabian StyleZhu, Shangwen, Xiaohua Gu, Siwen Liu, and Yan Liu. 2023. "Analysis of Factors Affecting the Preparation of Mullite Whiskers from Silica-Rich Slag and Application Studies" Materials 16, no. 24: 7633. https://doi.org/10.3390/ma16247633
APA StyleZhu, S., Gu, X., Liu, S., & Liu, Y. (2023). Analysis of Factors Affecting the Preparation of Mullite Whiskers from Silica-Rich Slag and Application Studies. Materials, 16(24), 7633. https://doi.org/10.3390/ma16247633