Bioactivity, Cytotoxicity, and Tribological Studies of Nickel-Free Austenitic Stainless Steel Obtained via Powder Metallurgy Route
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Tribology Testing
2.3. Bioactivity Analysis
2.4. Cytotoxicity Testing
2.5. Corrosion Testing
2.6. Statistical Analysis
3. Results
3.1. Microstructural Characterisation
Cytotoxicity Tests
3.2. Bioactivity and Corrosion Tests
3.3. Tribology Testing
4. Discussion
5. Conclusions
- Nickel-free stainless steel Fe-18%Cr-12%Ni-0.5%N obtained from elemental powders using MA, HIP, and HT is characterised by a small grain size and a fully austenitic phase structure with annealing twins.
- Vacuum heat treatment of nickel-free steel applied after HIP reduces, on one hand, the hardness, and improves, on the other hand, the corrosion, wear resistance and cytotoxicity of the HIP nickel-free stainless steel.
- In vitro cytotoxicity studies indicate that none of the tested materials showed any cytotoxic effect. However, in the case of the HIP + HT sample, an increased cell proliferation was observed.
- During bioactivity tests, an apatite layer appeared on all tested materials after 7 days of immersion in the SBF solution.
- Friction tests of the tested materials revealed that HIP + HT nickel-free stainless steel has the lowest friction coefficient and wear rate, even better than 316LV steel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, K.; Ren, Y. Nickel-free austenitic stainless steels for medical applications. Sci. Technol. Adv. Mater. 2010, 11, 014105. [Google Scholar] [CrossRef] [PubMed]
- Becerikli, M.; Jaurich, H.; Wallner, C.; Wagner, J.M.; Dadras, M.; Jerrkant, B. P2000—A high-nitrogen austenitic steel for application in bone surgery. PLoS ONE 2019, 14, e0214384. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.; Buscher, R.; Tikhovski, I.; Brauer, H.; Runiewicz, A.; Dudzinski, W. Mechanical, Chemical and Tribological Properties of the Nickel-free High-Nitrogen Steel X13CrMnMoN18-14-3 (1.4452). Matwiss U Werkst. 2002, 33, 705–715. [Google Scholar] [CrossRef]
- Fini, M.; Aldini, N.N.; Torricelli, P.; Giavaresi, G.; Borsari, V.; Lenger, H.; Bernauer, J.; Giardino, R.; Chiesa, R.; Cigada, A. A new austenitic stainless steel with negligible nickel content: An in vitro and in vivo comparative investigation. Biomaterials 2003, 24, 4929–4939. [Google Scholar] [CrossRef]
- Walter, M.J. Stainless steel for medical implants. Adv. Mater. Process. 2006, 164, 84. [Google Scholar]
- Reclaru, L.; Ardelean, L.C. Corrosion Susceptibility and Allergy Potential of Austenitic Stainless Steels. Materials 2020, 13, 4187. [Google Scholar] [CrossRef]
- Wataha, J.C.; O’Dell, N.L.; Singh, B.B.; Ghazi, M.; Whitford, G.M.; Lockwood, P.E. Relating nickel-induced tissue inflammation to nickel releasein vivo. J. Biomed. Mater. Res. 2001, 58, 537–544. [Google Scholar] [CrossRef]
- Sule, K.; Umbsaar, J.; Prenner, E.J. Mechanisms of Co, Ni, and Mn toxicity: From exposure and homeostasis to their interactions with and impact on lipids and biomembranes. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183250. [Google Scholar] [CrossRef]
- Li, M.; Yin, T.; Wang, Y.; Du, F.; Zou, X.; Gregersen, H.; Wang, G. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro. Mater. Sci. Eng. C 2014, 43, 641–648. [Google Scholar] [CrossRef]
- Montaro, L.; Cervellati, M.; Campoccia, D.; Arciola, C.R. Promising in vitro performances of a new nickel-free stainless steel. J. Mater. Sci. Mater. Med. 2006, 17, 267–275. [Google Scholar] [CrossRef]
- Kuroda, D.; Hiromoto, S.; Katada, Y. Corrosion behavior of nickel-free high nitrogen austenitic stainless steel in simulated biological environments. Mater. Trans. 2002, 43, 3100–3104. [Google Scholar] [CrossRef]
- Vats, V.; Baskaran, T.; Arya, S.B. Tribo-corrosion study of nickel-free, high nitrogen and high manganese austenitic stainless steel. Tribol. Int. 2018, 119, 659–666. [Google Scholar] [CrossRef]
- Gurol, U.; Can, K. Effect of carbon and manganese content on the microstructure and mechanical properties of high manganese austenitic steel. J. Min. Metall. Sect. B Metall. 2020, 56, 171–182. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Sheng, S.L.; Zhang, L.M.; Chen, J.; Yang, L.L. Friction and wear behaviors of a high nitrogen austenitic stainless steel Fe-19Cr-15Mn-0.66N. J. Min. Metall. Sect. B Metall. 2021, 57, 285–293. [Google Scholar] [CrossRef]
- Thomann, U.I.; Uggowitzer, P.J. Wear-corrosion behavior of biocompatible austenitic stainless steels. Wear 2000, 239, 48–58. [Google Scholar] [CrossRef]
- Manova, D.; Hirsch, D.; Richter, E.; Mandl, S.; Neumann, H.; Rauschenbach, B. Microstructure of nitrogen implanted stainless steel after wear experiment. Surf. Coat. Technol. 2007, 201, 8329–8333. [Google Scholar] [CrossRef]
- Salahinejad, E.; Amini, R.; Marasi, M.; Hadianfard, M.J. Microstructure and wear behavior of a porous nanocrystalline nickel-free austenitic stainless steel developed by powder metallurgy. Mater. Des. 2010, 31, 2259–2263. [Google Scholar] [CrossRef]
- Zhao, H.C.; Ren, Y.B.; Liu, W.P.; Fan, X.M.; Yang, K. Effect of Cold Deformation on Friction Wear Property of 00Cr18Mn15Mo2N0.9 High-nitrogen Nickel-free Stainless Steel. Chin. J. Mater. Res. 2016, 30, 171–178. [Google Scholar]
- Yamamoto, A.; Kohyama, Y.; Kuroda, D.; Hanawa, T. Cytocompatibility evaluation of Ni-free stainless steel manufactured by nitrogen adsorption treatment. Mater. Sci. Eng. C 2004, 24, 737–743. [Google Scholar] [CrossRef]
- Ren, Y.B.; Yang, H.J.; Yang, K.; Zhang, B. In Vitro Biocompatibility of A New High Nitrogen Nickel Free Austenitic Stainless Steel. Key Eng. Mater. 2007, 342, 605–608. [Google Scholar] [CrossRef]
- Romanczuk, E.; Perkowski, K.; Oksiuta, Z. Microstructure, Mechanical, and Corrosion Properties of Ni-Free Austenitic Stainless Steel Prepared by Mechanical Alloying and HIPping. Materials 2019, 12, 3416. [Google Scholar] [CrossRef]
- Xin, F.; Jian, C.; Peng, Z.J. Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid. Trans. Nonferrous Met. Soc. China 2009, 19, 347–352. [Google Scholar]
- Heidari, L.; Tangestani, A.; Hadianfard, M.J.; Vashaee, D.; Tayebi, L. Effect of fabrication method on the structure and properties of a nanostructured nickel-free stainless stee. Adv. Powder Technol. 2020, 31, 3408–3419. [Google Scholar] [CrossRef]
- Chao, K.L.; Liao, H.Y.; Shyue, J.J.; Lian, S.S. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels. Metall. Mater. Trans. B 2014, 45, 381–391. [Google Scholar] [CrossRef]
- Sadeghzade, S.; Emadi, R.; Ahmadi, T.; Tavangarian, F. Synthesis, characterization and strengthening mechanism of modified and unmodified porous diopside/baghdadite scaffolds. Mater. Chem. Phys. 2019, 228, 89–97. [Google Scholar] [CrossRef]
- Yu, W.; Du, C.; Shen, H.; He, H.; Yu, Y.; Li, Y.; Luo, F. Influence of Nitrogen Content on the Corrosion Behavior of Powder Metallurgy Nickel-Free Austenitic Stainless Steel. Adv. Mater. Sci. Eng. 2021, 2021, 7808070. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, X.; Chen, J.; Yang, L.; Wang, X.; Zhou, H.; Zou, J. Electrochemical Behavior and Passive Film Composition of a High-Nitrogen Nickel-Free Austenitic Stainless Steel. Arab. J. Sci. Eng. 2021, 47, 887–894. [Google Scholar] [CrossRef]
- Tangestani, A.; Hadianfard, M.J.; Vashaee, D. Microstructure, mechanical and magnetic properties of a nickel-free austenitic stainless steel fabricated by hot powder forging. Proc. Inst. Mech. Eng. Part E 2023. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kondo, Y.; Okayasu, M. Friction-Induced Martensitic Transformation and Wear Properties of Stainless Steel under Dry and Wet Conditions. Metals 2020, 10, 743. [Google Scholar] [CrossRef]
- Tschiptschin, A.P.; Garzón, C.M.; Lopez, D.M. The effect of nitrogen on the scratch resistance of austenitic stainless steels. Tribol. Int. 2006, 39, 167–174. [Google Scholar] [CrossRef]
- Talha, M.; Behera, C.K.; Sinha, O.P. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater. Sci. Eng. C 2013, 33, 3563–3575. [Google Scholar] [CrossRef]
- Eichert, D.; Combes, C.; Drouet, C.; Rey, C. Formation and evolution of hydrated surface layers of apatites. Key Eng. Mater. 2005, 284, 105–108. [Google Scholar]
- Yabutsuka, T.; Karashima, R.; Takai, S.; Yao, T. Effect of Doubled Sandblasting Process and Basic Simulated Body Fluid Treatment on Fabrication of Bioactive Stainless Steels. Materials 2018, 11, 1334. [Google Scholar] [CrossRef]
Reagent | Amount |
---|---|
NaCl | 8.035 g |
NaHCO3 | 0.355 g |
KCl | 0.225 g |
K2HPO4∙3H2O | 0.231 g |
MgCl2∙6H2O | 0.311 g |
1.0 M HCl | 39 cm3 |
CaCl2 | 0.292 g |
Na2SO4 | 0.072 g |
Tris—(CH2OH)3CNH2 | 6.118 g |
1.0 M HCl | Appropriate amount for adjusting pH |
Element | Chemical Composition [% mas.] | ||||
---|---|---|---|---|---|
Point 1 | Point 2 | Point 3 | Point 4 | Average | |
Ca | 24.18 ± 0.08 | 19.56 ± 0.13 | 20.61 ± 0.11 | 23.16 ± 0.17 | 21.88 ± 0.11 |
P | 15.05 ± 0.14 | 11.18 ± 0.09 | 12.01 ± 0.07 | 12.98 ± 0.12 | 12.81 ± 0.09 |
Material | Ecor (V) | Rp (ohm) | Icor (µA/cm2) | CR (µm/cm2) |
---|---|---|---|---|
HIP | −0.495 ± 0.023 | 6740 ± 155 | 2.090 ± 0.012 | 147 ± 5 |
HIP + HT | −0.072 ± 0.026 | 473,790 ± 1236 | 0.023 ± 0.004 | 0.913 ± 0.07 |
316LV | −0.140 ± 0.012 | 452,300 ± 1450 | 0.030 ± 0.003 | 0.873 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanczuk-Ruszuk, E.; Krawczyńska, A.; Łukaszewicz, A.; Józwik, J.; Tofil, A.; Oksiuta, Z. Bioactivity, Cytotoxicity, and Tribological Studies of Nickel-Free Austenitic Stainless Steel Obtained via Powder Metallurgy Route. Materials 2023, 16, 7637. https://doi.org/10.3390/ma16247637
Romanczuk-Ruszuk E, Krawczyńska A, Łukaszewicz A, Józwik J, Tofil A, Oksiuta Z. Bioactivity, Cytotoxicity, and Tribological Studies of Nickel-Free Austenitic Stainless Steel Obtained via Powder Metallurgy Route. Materials. 2023; 16(24):7637. https://doi.org/10.3390/ma16247637
Chicago/Turabian StyleRomanczuk-Ruszuk, Eliza, Agnieszka Krawczyńska, Andrzej Łukaszewicz, Jerzy Józwik, Arkadiusz Tofil, and Zbigniew Oksiuta. 2023. "Bioactivity, Cytotoxicity, and Tribological Studies of Nickel-Free Austenitic Stainless Steel Obtained via Powder Metallurgy Route" Materials 16, no. 24: 7637. https://doi.org/10.3390/ma16247637
APA StyleRomanczuk-Ruszuk, E., Krawczyńska, A., Łukaszewicz, A., Józwik, J., Tofil, A., & Oksiuta, Z. (2023). Bioactivity, Cytotoxicity, and Tribological Studies of Nickel-Free Austenitic Stainless Steel Obtained via Powder Metallurgy Route. Materials, 16(24), 7637. https://doi.org/10.3390/ma16247637