Change in Mechanical Properties of Laser Powder Bed Fused AlSi7Mg Alloy during Long-Term Exposure at Warm Operating Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and L-PBF Process
2.2. Heat Treatments
2.3. Mechanical Testing
2.4. Microstructural Chatacterization
3. Results
3.1. Microstructure in Heat Treated Conditions
3.2. Aging Profiles
3.3. Mechanical Properties
4. Discussion
Aging Effects on Mechanical Properties
5. Conclusions
- The α-Al cells and the Si-eutectic network dissolved during the SHT per 0.5 h, while coarsening phenomena of the Si-eutectic particles and Fe-rich phase affected the AlSi7Mg SHTed per 4 h. Despite these microstructural variations, the retained laser scan tracks continued to induce a certain degree of microstructural heterogeneity.
- Detrimental effects on the Vickers microhardness and tensile strength were obtained after 128 h exposure time at 150 °C, both in as-built and SHTed samples.
- DA at 175 °C induced secondary aging effects on both the top and bottom samples and promoted a faster decrease of the mechanical properties. As regards the samples SHTed for the longest soaking times, the AA at 175 °C led to mechanical properties at values lower than those exhibited by the samples in SHTed conditions, due to the presence of coarsened precipitates.
- The more homogenous microstructure that characterized the samples SHTed per 4 h allowed the best improvement to be obtained in terms of ductility after the AA at 175 °C per 512 h (increment of + 35% with respect to the SHTed conditions).
- The AlSi7Mg samples that are characterized by the cellular α-Al matrix seem to endure better long-term exposures at both 150 °C and 175 °C, probably because the fine and cellular microstructure continues to provide adequate stiffness and strength despite the coarsening phenomena affecting the precipitates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duda, T.; Raghavan, L.V. 3D Metal Printing Technology: The Need to Re-Invent Design Practice. AI Soc. 2018, 33, 241–252. [Google Scholar] [CrossRef]
- Ghio, E.; Cerri, E. Additive Manufacturing of AlSi10Mg and Ti6Al4V Lightweight Alloys via Laser Powder Bed Fusion: A Review of Heat Treatments Effects. Materials 2022, 15, 2047. [Google Scholar] [CrossRef] [PubMed]
- Polmear, I.; StJohn, D.; Nie, J.F.; Qian, M. Light Alloys: Metallurgy of the Light Metals; Gifford, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Tonelli, L.; Liverani, E.; Morri, A.; Ceschini, L. Role of Direct Aging and Solution Treatment on Hardness, Microstructure and Residual Stress of the A357 (AlSi7Mg0.6) Alloy Produced by Powder Bed Fusion. Metall. Mater. Trans. B 2021, 52, 2484–2496. [Google Scholar] [CrossRef]
- Cerri, E.; Ghio, E.; Bolelli, G. Effect of the Distance from Build Platform and Post-Heat Treatment of AlSi10Mg Alloy Manufactured by Single- and Multi-Laser Selective Laser Melting. J. Mater. Eng. Perform. 2021, 30, 4981–4992. [Google Scholar] [CrossRef]
- Van Cauwenbergh, P.; Samaee, V.; Thijs, L.; Nejezchlebová, J.; Sedlák, P.; Iveković, A.; Schryvers, D.; Van Hooreweder, B.; Vanmeensel, K. Unravelling the Multi-Scale Structure–Property Relationship of Laser Powder Bed Fusion Processed and Heat-Treated AlSi10Mg. Sci. Rep. 2021, 11, 6423. [Google Scholar] [CrossRef] [PubMed]
- Casati, R.; Hamidi Nasab, M.; Coduri, M.; Tirelli, V.; Vedani, M. Effects of Platform Pre-Heating and Thermal-Treatment Strategies on Properties of AlSi10Mg Alloy Processed by Selective Laser Melting. Metals 2018, 8, 954. [Google Scholar] [CrossRef]
- Zhu, S.; Katti, I.; Qiu, D.; Forsmark, J.H.; Easton, M.A. Microstructural Analysis of the Influences of Platform Preheating and Post-Build Heat Treatment on Mechanical Properties of Laser Powder Bed Fusion Manufactured AlSi10Mg Alloy. Mater. Sci. Eng. A 2023, 882, 145486. [Google Scholar] [CrossRef]
- Fiocchi, J.; Tuissi, A.; Biffi, C.A. Heat Treatment of Aluminium Alloys Produced by Laser Powder Bed Fusion: A Review. Mater. Des. 2021, 204, 109651. [Google Scholar] [CrossRef]
- Edwards, G.A.; Stiller, K.; Dunlop, G.L.; Couper, M.J. The Precipitation Sequence in Al–Mg–Si Alloys. Acta Mater. 1998, 46, 3893–3904. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Jiang, H.; Lü, Z.; Zhu, Z. Characterizations of Precipitation Behavior of Al-Mg-Si Alloys under Different Heat Treatments. China Foundry 2018, 15, 89–96. [Google Scholar] [CrossRef]
- Santos Macías, J.G.; Douillard, T.; Zhao, L.; Maire, E.; Pyka, G.; Simar, A. Influence on Microstructure, Strength and Ductility of Build Platform Temperature during Laser Powder Bed Fusion of AlSi10Mg. Acta Mater. 2020, 201, 231–243. [Google Scholar] [CrossRef]
- Bosio, F.; Phutela, C.; Ghisi, N.; Alhammadi, A.; Aboulkhair, N.T. Tuning the Microstructure and Mechanical Properties of AlSi10Mg Alloy via In-Situ Heat-Treatments in Laser Powder Bed Fusion. Mater. Sci. Eng. A 2023, 879, 145268. [Google Scholar] [CrossRef]
- Rao, H.; Giet, S.; Yang, K.; Wu, X.; Davies, C.H.J. The Influence of Processing Parameters on Aluminium Alloy A357 Manufactured by Selective Laser Melting. Mater. Des. 2016, 109, 334–346. [Google Scholar] [CrossRef]
- Ghio, E.; Cerri, E. Work Hardening of Heat-Treated AlSi10Mg Alloy Manufactured by Selective Laser Melting: Effects of Layer Thickness and Hatch Spacing. Materials 2021, 14, 4901. [Google Scholar] [CrossRef] [PubMed]
- Cerri, E.; Ghio, E. Aging Profiles of AlSi7Mg0.6 and AlSi10Mg0.3 Alloys Manufactured via Laser-Powder Bed Fusion: Direct Aging versus T6. Materials 2022, 15, 6126. [Google Scholar] [CrossRef]
- Giovagnoli, M.; Tocci, M.; Fortini, A.; Merlin, M.; Ferroni, M.; Migliori, A.; Pola, A. Effect of Different Heat-Treatment Routes on the Impact Properties of an Additively Manufactured AlSi10Mg Alloy. Mater. Sci. Eng. A 2021, 802, 140671. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, Q.; Wang, Y.; Zang, Q.; Mi, S.; Xu, J.; Xiao, Y.; Wu, Y.; Luan, J. Microstructural Evolution and Strengthening Mechanism of High-Strength AlSi8.1 Mg1.4 Alloy Produced by Selective Laser Melting. Mater. Des. 2022, 218, 110674. [Google Scholar] [CrossRef]
- Chen, B.; Moon, S.K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K. Strength and Strain Hardening of a Selective Laser Melted AlSi10Mg Alloy. Scr. Mater. 2017, 141, 45–49. [Google Scholar] [CrossRef]
- Wei, P.; Wei, Z.; Chen, Z.; Du, J.; He, Y.; Li, J.; Zhou, Y. The AlSi10Mg Samples Produced by Selective Laser Melting: Single Track, Densification, Microstructure and Mechanical Behavior. Appl. Surf. Sci. 2017, 408, 38–50. [Google Scholar] [CrossRef]
- Chambrin, N.; Dalverny, O.; Cloue, J.-M.; Brucelle, O.; Alexis, J. In Situ Ageing with the Platform Preheating of AlSi10Mg Alloy Manufactured by Laser Powder-Bed Fusion Process. Metals 2022, 12, 2148. [Google Scholar] [CrossRef]
- Park, T.-H.; Baek, M.-S.; Hyer, H.; Sohn, Y.; Lee, K.-A. Effect of Direct Aging on the Microstructure and Tensile Properties of AlSi10Mg Alloy Manufactured by Selective Laser Melting Process. Mater. Charact. 2021, 176, 111113. [Google Scholar] [CrossRef]
- Ji, Y.; Dong, C.; Kong, D.; Li, X. Design Materials Based on Simulation Results of Silicon Induced Segregation at AlSi10Mg Interface Fabricated by Selective Laser Melting. J. Mater. Sci. Technol. 2020, 46, 145–155. [Google Scholar] [CrossRef]
- Qin, H.; Dong, Q.; Fallah, V.; Daymond, M.R. Rapid Solidification and Non-Equilibrium Phase Constitution in Laser Powder Bed Fusion (LPBF) of AlSi10Mg Alloy: Analysis of Nano-Precipitates, Eutectic Phases, and Hardness Evolution. Metall. Mater. Trans. A 2020, 51, 448–466. [Google Scholar] [CrossRef]
- Di Egidio, G.; Martini, C.; Börjesson, J.; Ghassemali, E.; Ceschini, L.; Morri, A. Influence of Microstructure on Fracture Mechanisms of the Heat-Treated AlSi10Mg Alloy Produced by Laser-Based Powder Bed Fusion. Materials 2023, 16, 2006. [Google Scholar] [CrossRef] [PubMed]
- Di Egidio, G.; Ceschini, L.; Morri, A.; Martini, C.; Merlin, M. A Novel T6 Rapid Heat Treatment for AlSi10Mg Alloy Produced by Laser-Based Powder Bed Fusion: Comparison with T5 and Conventional T6 Heat Treatments. Metall. Mater. Trans. B 2022, 53, 284–303. [Google Scholar] [CrossRef]
- Nabil, S.T.; Arrieta, E.; Wicker, R.B.; Benedict, M.; Medina, F. Effect of Thermal Aging in the Fatigue Life of Hot Isostatic Pressed AlSi10Mg Fabricated by Laser Powder Bed Fusion. In Proceedings of the 33rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 25–27 July 2022; pp. 325–340. [Google Scholar]
- Wei, P.; Chen, Z.; Zhang, S.; Fang, X.; Lu, B.; Zhang, L.; Wei, Z. Effect of T6 Heat Treatment on the Surface Tribological and Corrosion Properties of AlSi10Mg Samples Produced by Selective Laser Melting. Mater. Charact. 2021, 171, 110769. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, X.; Ma, F.; Jiang, J.; Yang, W. Research on Deposited Tracks and Microstructures of AlSi10Mg Alloy Produced by Selective Laser Melting. Appl. Phys. A 2020, 126, 643. [Google Scholar] [CrossRef]
- Tocci, M.; Pola, A.; Gelfi, M.; La Vecchia, G.M. Effect of a New High-Pressure Heat Treatment on Additively Manufactured AlSi10Mg Alloy. Metall. Mater. Trans. A 2020, 51, 4799–4811. [Google Scholar] [CrossRef]
- Majeed, A.; Zhang, Y.; Lv, J.; Peng, T.; Atta, Z.; Ahmed, A. Investigation of T4 and T6 Heat Treatment Influences on Relative Density and Porosity of AlSi10Mg Alloy Components Manufactured by SLM. Comput. Ind. Eng. 2020, 139, 106194. [Google Scholar] [CrossRef]
- Medrano, V.A.; Arrieta, E.; Merino, J.; Ruvalcaba, B.; Caballero, K.; Ramirez, B.; Diemann, J.; Murr, L.E.; Wicker, R.B.; Godfrey, D.; et al. A Comprehensive and Comparative Study of Microstructure and Mechanical Properties for Post-Process Heat Treatment of AlSi7Mg Alloy Components Fabricated in Different Laser Powder Bed Fusion Systems. J. Mater. Res. Technol. 2023, 24, 6820–6842. [Google Scholar] [CrossRef]
- Wang, M.; Song, B.; Wei, Q.; Zhang, Y.; Shi, Y. Effects of Annealing on the Microstructure and Mechanical Properties of Selective Laser Melted AlSi7Mg Alloy. Mater. Sci. Eng. A 2019, 739, 463–472. [Google Scholar] [CrossRef]
- Pereira, J.C.; Gil, E.; Solaberrieta, L.; San Sebastián, M.; Bilbao, Y.; Rodríguez, P.P. Comparison of AlSi7Mg0.6 Alloy Obtained by Selective Laser Melting and Investment Casting Processes: Microstructure and Mechanical Properties in as-Built/as-Cast and Heat-Treated Conditions. Mater. Sci. Eng. A 2020, 778, 139124. [Google Scholar] [CrossRef]
- Ming, X.; Song, D.; Yu, A.; Tan, H.; Zhang, Q.; Zhang, Z.; Chen, J.; Lin, X. Effect of Heat Treatment on Microstructure, Mechanical and Thermal Properties of Selective Laser Melted AlSi7Mg Alloy. J. Alloys Compd. 2023, 945, 169278. [Google Scholar] [CrossRef]
- Cerri, E.; Ghio, E.; Bolelli, G. Defect-Correlated Vickers Microhardness of Al-Si-Mg Alloy Manufactured by Laser Powder Bed Fusion with Post-Process Heat Treatments. J. Mater. Eng. Perform. 2022, 31, 8047–8067. [Google Scholar] [CrossRef]
- Digital Science & Research Solutions. Available online: www.digital-science.com (accessed on 2 November 2023).
- Del Castillo, I.; Wilson, A.; Sun, X.; Ader, L.; VerKuilen, T.; Massar, A.; Li, Y.; Ebrahim, M.; Breman, T.; Es-Said, O.S. Effect of Long-Term Elevated Temperatures on Mechanical Properties of AlSi10Mg. J. Mater. Eng. Perform. 2023, 32, 91–104. [Google Scholar] [CrossRef]
- Merino, M.C.; Pardo, A.; Arrabal, R.; Merino, S.; Casajús, P.; Mohedano, M. Influence of Chloride Ion Concentration and Temperature on the Corrosion of Mg–Al Alloys in Salt Fog. Corros. Sci. 2010, 52, 1696–1704. [Google Scholar] [CrossRef]
- Czerwinski, F. Thermal Stability of Aluminum Alloys. Materials 2020, 13, 3441. [Google Scholar] [CrossRef]
- ASTM E8/E8M; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2018.
- Xiong, Z.H.; Liu, S.L.; Li, S.F.; Shi, Y.; Yang, Y.F.; Misra, R.D.K. Role of Melt Pool Boundary Condition in Determining the Mechanical Properties of Selective Laser Melting AlSi10Mg Alloy. Mater. Sci. Eng. A 2019, 740–741, 148–156. [Google Scholar] [CrossRef]
- Cerri, E.; Ghio, E. Metallurgical Analysis of Laser Powder Bed-Fused Al–Si–Mg Alloys: Main Causes of Premature Failure. Mater. Sci. Eng. A 2023, 881, 145402. [Google Scholar] [CrossRef]
- Tiryakioğlu, M.; Shuey, R.T. Quench Sensitivity of an Al-7 Pct Si-0.6 Pct Mg Alloy: Characterization and Modeling. Metall. Mater. Trans. B 2007, 38, 575–582. [Google Scholar] [CrossRef]
- Tirth, V.; Elkotb, M.A.G.; Badruddin, I.A.; Mahmoud, E.R.I.; Islam, S.; Kamel, B.M. Effect of Pressure on Ageing Response of (SiC + Al2O3)/6063 Composites. J. Mater. Res. Technol. 2020, 9, 11834–11848. [Google Scholar] [CrossRef]
- Marceau, R.K.W.; Sha, G.; Lumley, R.N.; Ringer, S.P. Evolution of Solute Clustering in Al–Cu–Mg Alloys during Secondary Ageing. Acta Mater. 2010, 58, 1795–1805. [Google Scholar] [CrossRef]
- Buha, J.; Lumley, R.N.; Crosky, A.G. Secondary Ageing in an Aluminium Alloy 7050. Mater. Sci. Eng. A 2008, 492, 1–10. [Google Scholar] [CrossRef]
- Buha, J.; Lumley, R.N.; Crosky, A.G.; Hono, K. Secondary Precipitation in an Al–Mg–Si–Cu Alloy. Acta Mater. 2007, 55, 3015–3024. [Google Scholar] [CrossRef]
- Asghar, G.; Peng, L.; Fu, P.; Yuan, L.; Liu, Y. Role of Mg2Si Precipitates Size in Determining the Ductility of A357 Cast Alloy. Mater. Des. 2020, 186, 108280. [Google Scholar] [CrossRef]
- Maruyama, K.; Abe, F.; Sato, H.; Shimojo, J.; Sekido, N.; Yoshimi, K. On the Physical Basis of a Larson-Miller Constant of 20. Int. J. Press. Vessel. Pip. 2018, 159, 93–100. [Google Scholar] [CrossRef]
- Summers, P.T.; Chen, Y.; Rippe, C.M.; Allen, B.; Mouritz, A.P.; Case, S.W.; Lattimer, B.Y. Overview of Aluminum Alloy Mechanical Properties during and after Fires. Fire Sci. Rev. 2015, 4, 3. [Google Scholar] [CrossRef]
Alloys | Si | Mg | Fe | Cu | Mn | Ti | C | Al |
---|---|---|---|---|---|---|---|---|
AlSi7Mg | 7.0 | 0.6 | 0.06 | <0.005 | 0.006 | 0.12 | 0.03 | Balance |
Heat Treatments | Temperature [°C] | Time [h] |
---|---|---|
DA and AA | 150 | 0.5, 1, 2, 4, 8, 12, 16, 32, 64, 128, 256, 384, 512 |
175 | ||
SHT | 505 | 0.5 |
4 |
Alloys | SHTed per 0.5 h | SHTed per 4 h | ||
---|---|---|---|---|
HV0.5 | ΔHV0.5 1 | HV0.5 | ΔHV0.5 1 | |
AlSi7Mg | 75 ± 1 | −36% | 62 ± 1 | −48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerri, E.; Ghio, E. Change in Mechanical Properties of Laser Powder Bed Fused AlSi7Mg Alloy during Long-Term Exposure at Warm Operating Temperatures. Materials 2023, 16, 7639. https://doi.org/10.3390/ma16247639
Cerri E, Ghio E. Change in Mechanical Properties of Laser Powder Bed Fused AlSi7Mg Alloy during Long-Term Exposure at Warm Operating Temperatures. Materials. 2023; 16(24):7639. https://doi.org/10.3390/ma16247639
Chicago/Turabian StyleCerri, Emanuela, and Emanuele Ghio. 2023. "Change in Mechanical Properties of Laser Powder Bed Fused AlSi7Mg Alloy during Long-Term Exposure at Warm Operating Temperatures" Materials 16, no. 24: 7639. https://doi.org/10.3390/ma16247639
APA StyleCerri, E., & Ghio, E. (2023). Change in Mechanical Properties of Laser Powder Bed Fused AlSi7Mg Alloy during Long-Term Exposure at Warm Operating Temperatures. Materials, 16(24), 7639. https://doi.org/10.3390/ma16247639