Silicon and Silicon Carbide Recrystallization by Laser Annealing: A Review
Abstract
:1. Introduction
2. Laser Annealing Theory
3. Silicon Laser Annealing
4. Silicon Carbide Laser Annealing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Portavoce, A.; Simola, R.; Mangelinck, D.; Bernardini, J.; Fornara, P. Dopant diffusion during amorphous silicon crystallization. In Defect and Diffusion Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2007; pp. 33–38. [Google Scholar]
- Roccaforte, F.; Fiorenza, P.; Vivona, M.; Greco, G.; Giannazzo, F. Selective Doping in Silicon Carbide Power Devices. Materials 2021, 14, 3923. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa, F.; Canino, M.; Li, F.; Tamarri, F.; Roux, B.; Morata, S.; La Via, F.; Zielinski, M.; Nipoti, R. Ion implantation and activation of aluminum in bulk 3C-SiC and 3C-SiC on Si. MRS Adv. 2022, 7, 1347–1352. [Google Scholar] [CrossRef]
- Shtyrkov, E.; Khaibullin, I.; Zaripov, M.; Galyatudinov, M.; Bayazitov, R. Local laser annealing of implantation doped semiconductor layers. Sov. Phys. Semicond. 1975, 9, 1309–1310. [Google Scholar]
- Wu, J.; He, Z.; Guo, Z.; Tian, R.; Wang, F.; Liu, M.; Yang, X.; Fan, Z.; Yang, F. Pulsed Laser Annealing of Phosphorous-Implanted 4H-SiC: Electrical and Structural Characteristics. J. Electron. Mater. 2022, 51, 172–178. [Google Scholar] [CrossRef]
- Wang, C.; Li, C.; Huang, S.; Lu, W.; Yan, G.; Zhang, M.; Wu, H.; Lin, G.; Wei, J.; Huang, W.; et al. Phosphorus diffusion in germanium following implantation and excimer laser annealing. Appl. Surf. Sci. 2014, 300, 208–212. [Google Scholar] [CrossRef]
- Vitali, G.; Rossi, M.; Karpuzov, D.; Budinov, H.; Kalitzova, M. Low-power pulsed-laser annealing of implanted GaAs. J. Appl. Phys. 1991, 69, 3882–3885. [Google Scholar] [CrossRef]
- Vitali, G.V.G. Experimental conditions required to achieve low-power pulsed-laser annealing of implanted GaAs. Jpn. J. Appl. Phys. 1992, 31, 2049. [Google Scholar] [CrossRef]
- Shima, A. Laser Annealing Technology and Device Integration Challenges. In Proceedings of the 2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors, Kyoto, Japan, 10–13 October 2006; pp. 11–14. [Google Scholar]
- Li, G.; Xu, M.; Zou, D.; Cui, Y.; Zhong, Y.; Cui, P.; Cheong, K.Y.; Xia, J.; Nie, H.; Li, S.; et al. Fabrication of Ohmic Contact on N-Type SiC by Laser Annealed Process: A Review. Crystals 2023, 13, 1106. [Google Scholar] [CrossRef]
- Chen, Y.; Okada, T.; Noguchi, T.; Mazzamuto, F.; Huet, K. Excimer laser annealing for low-voltage power MOSFET. Jpn. J. Appl. Phys. 2016, 55, 086503. [Google Scholar] [CrossRef]
- Rahimo, M.; Corvasce, C.; Vobecky, J.; Otani, Y.; Huet, K. Thin-Wafer Silicon IGBT With Advanced Laser Annealing and Sintering Process. IEEE Electron Device Lett. 2012, 33, 1601–1603. [Google Scholar] [CrossRef]
- Baliga, B.J. Trends in power semiconductor devices. IEEE Trans. Electron Devices 1996, 43, 1717–1731. [Google Scholar] [CrossRef]
- Kim, K.; Kang, Y.; Yun, S.; Yang, C.; Jung, E.; Hong, J.; Kim, K. Reduced On-Resistance and Improved 4H-SiC Junction Barrier Schottky Diodes Performance by Laser Annealing on C-Face Ohmic Regions in Thin Structures. Coatings 2022, 12, 777. [Google Scholar] [CrossRef]
- Langpoklakpam, C.; Liu, A.-C.; Chu, K.-H.; Hsu, L.-H.; Lee, W.-C.; Chen, S.-C.; Sun, C.-W.; Shih, M.-H.; Lee, K.-Y.; Kuo, H.-C. Review of Silicon Carbide Processing for Power MOSFET. Crystals 2022, 12, 245. [Google Scholar] [CrossRef]
- Rascunà, S.; Badalà, P.; Tringali, C.; Bongiorno, C.; Smecca, E.; Alberti, A.; Di Franco, S.; Giannazzo, F.; Greco, G.; Roccaforte, F.; et al. Morphological and electrical properties of Nickel based Ohmic contacts formed by laser annealing process on n-type 4H-SiC. Mater. Sci. Semicond. Process. 2019, 97, 62–66. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, J.; Wu, N.; Chen, G.; Hong, M.; Bera, L.K.; Zhu, C. Drive-Current Enhancement in Ge n-Channel MOSFET Using Laser Annealing for Source/Drain Activation. IEEE Electron Device Lett. 2006, 27, 728–730. [Google Scholar] [CrossRef]
- Hou, P.-C.; Huang, W.-H.; Kao, M.-H.; Wang, H.-H.; Shieh, J.-M.; Shen, C.-H.; Pan, F.-M.; Chang, L. Source/Drain Activation for Flexible Poly-Si Nanoscale pFETs with a Laser-Buffer Layer by CO2 laser Annealing. ECS J. Solid State Sci. Technol. 2022, 11, 065007. [Google Scholar] [CrossRef]
- Calabretta, C.; Agati, M.; Zimbone, M.; Boninelli, S.; Castiello, A.; Pecora, A.; Fortunato, G.; Calcagno, L.; Torrisi, L.; La Via, F. 4H-SiC MOSFET Source and Body Laser Annealing Process. Mater. Sci. Forum 2020, 1004, 705–711. [Google Scholar] [CrossRef]
- Huet, K.; Toqué-Tresonne, I.; Mazzamuto, F.; Emeraud, T.; Besaucèle, H. Laser Thermal Annealing: A low thermal budget solution for advanced structures and new materials. In Proceedings of the 2014 International Workshop on Junction Technology (IWJT), Shanghai, China, 18–20 May 2014; pp. 1–6. [Google Scholar]
- Pecholt, B.; Gupta, S.; Molian, P. Review of laser microscale processing of silicon carbide. J. Laser Appl. 2011, 23, 012008. [Google Scholar] [CrossRef]
- Scaltrito, L.; Fanchini, G.; Porro, S.; Cocuzza, M.; Giorgis, F.; Pirri, C.F.; Mandracci, P.; Ricciardi, C.; Ferrero, S.; Sgorlon, C.; et al. Surface analysis and defect characterization of 4H–SiC wafers for power electronic device applications. Diam. Relat. Mater. 2003, 12, 1224–1226. [Google Scholar] [CrossRef]
- Ou, H.; Shi, X.; Lu, Y.; Kollmuss, M.; Steiner, J.; Tabouret, V.; Syväjärvi, M.; Wellmann, P.; Chaussende, D. Novel Photonic Applications of Silicon Carbide. Materials 2023, 16, 1014. [Google Scholar] [CrossRef]
- Brown, M.S.; Arnold, C.B. Fundamentals of laser-material interaction and application to multiscale surface modification. In Laser Precision Microfabrication; Springer: Berlin/Heidelberg, Germany, 2010; pp. 91–120. [Google Scholar]
- Bäuerle, D. Laser Processing and Chemistry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Staudt, W.; Borneis, S.; Pippert, K.D. TFT annealing with excimer laser. Technology and market outlook. Phys. Status Solidi 1998, 166, 743–749. [Google Scholar]
- Baeri, P.; Rimini, E. Laser annealing of silicon. Mater. Chem. Phys. 1996, 46, 169–177. [Google Scholar] [CrossRef]
- Wood, R.F.; Giles, G.E. Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting. Phys. Rev. B 1981, 23, 2923–2942. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; Von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Fishman, C.; Feng, T. Theory of the electrical and photovoltaic properties of polycrystalline silicon. J. Appl. Phys. 1980, 51, 446–454. [Google Scholar] [CrossRef]
- Marqués, L.A.; Pelaz, L.; Aboy, M.a.; Barbolla, J. The laser annealing induced phase transition in silicon: A molecular dynamics study. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 216, 57–61. [Google Scholar] [CrossRef]
- Goto, T.; Saito, K.; Imaizumi, F.; Hatanaka, M.; Takimoto, M.; Mizumura, M.; Gotoh, J.; Ikenoue, H.; Sugawa, S. LTPS Thin-Film Transistors Fabricated Using New Selective Laser Annealing System. IEEE Trans. Electron Devices 2018, 65, 3250–3256. [Google Scholar] [CrossRef]
- García, O.; García-Ballesteros, J.; Munoz-Martin, D.; Núnez-Sánchez, S.; Morales, M.; Carabe, J.; Torres, I.; Gandía, J.; Molpeceres, C. Analysis of wavelength influence on a-Si crystallization processes with nanosecond laser sources. Appl. Surf. Sci. 2013, 278, 214–218. [Google Scholar] [CrossRef]
- Demas, J.N.; Demas, S.E. Luminescence. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 799–823. [Google Scholar]
- Salman, H.; Bacıoğlu, A.; Eken, S. Crystallization of hydrogenated amorphous silicon thin film on glass by using ns-pulsed fiber laser operating at 1064 nm. Mater. Sci. Semicond. Process. 2019, 95, 20–27. [Google Scholar] [CrossRef]
- Shieh, J.-M.; Chen, Z.-H.; Dai, B.-T.; Wang, Y.-C.; Zaitsev, A.; Pan, C.-L. Near-infrared femtosecond laser-induced crystallization of amorphous silicon. Appl. Phys. Lett. 2004, 85, 1232–1234. [Google Scholar] [CrossRef]
- Zhan, X.-P.; Hou, M.-Y.; Ma, F.-S.; Su, Y.; Chen, J.-Z.; Xu, H.-L. Room temperature crystallization of amorphous silicon film by ultrashort femtosecond laser pulses. Opt. Laser Technol. 2019, 112, 363–367. [Google Scholar] [CrossRef]
- Carluccio, R.; Cina, S.; Fortunato, G.; Friligkos, S.; Stoemenos, J. Structure of poly-Si films obtained by laser annealing. Thin Solid Film. 1997, 296, 57–60. [Google Scholar] [CrossRef]
- Bronnikov, K.; Dostovalov, A.; Cherepakhin, A.; Mitsai, E.; Nepomniaschiy, A.; Kulinich, S.A.; Zhizhchenko, A.; Kuchmizhak, A. Large-scale and localized laser crystallization of optically thick amorphous silicon films by near-IR femtosecond pulses. Materials 2020, 13, 5296. [Google Scholar] [CrossRef] [PubMed]
- Nalwa, H.S. Encyclopedia of Nanoscience and Nanotechnology Vol 8. Ne-P; American Scientific Publishers: Valencia, CA, USA, 2004. [Google Scholar]
- Smit, C.; Van Swaaij, R.; Donker, H.; Petit, A.; Kessels, W.; Van de Sanden, M. Determining the material structure of microcrystalline silicon from Raman spectra. J. Appl. Phys. 2003, 94, 3582–3588. [Google Scholar] [CrossRef]
- Koo, K.; Kim, S.; Choi, P.; Kim, J.; Jang, K.; Choi, B. Electrical evaluation of the crystallization characteristics of excimer laser annealed polycrystalline silicon active layer. Jpn. J. Appl. Phys. 2018, 57, 106503. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Ryu, H.-Y. Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing. J. Korean Phys. Soc. 2018, 72, 939–942. [Google Scholar] [CrossRef]
- Park, M.; Vangelatos, Z.; Rho, Y.; Park, H.K.; Jang, J.; Grigoropoulos, C.P. Comprehensive analysis of blue diode laser-annealing of amorphous silicon films. Thin Solid Film. 2020, 696, 137779. [Google Scholar] [CrossRef]
- Pan, C.-L.; Chen, K.-W.; Wang, Y.-C.; Kao, S.-H.; Wu, P. Room-temperature crystallization of amorphous silicon by near-UV femtosecond pulses. AIP Adv. 2020, 10, 055321. [Google Scholar] [CrossRef]
- Kuriyama, H.; Nohda, T.; Ishida, S.; Kuwahara, T.; Noguchi, S.; Kiyama, S.; Tsuda, S.; Nakano, S. Lateral grain growth of poly-Si films with a specific orientation by an excimer laser annealing method. Jpn. J. Appl. Phys. 1993, 32, 6190. [Google Scholar] [CrossRef]
- Morita, Y.; Noguchi, T. UV pulsed laser annealing of Si+ implanted silicon film and low-temperature super-thin film transistors. Jpn. J. Appl. Phys. 1989, 28, L309. [Google Scholar] [CrossRef]
- Peng, Y.; Fu, G.; Yu, W.; Li, S.; Wang, Y. Crystallization of amorphous Si films by pulsed laser annealing and their structural characteristics. Semicond. Sci. Technol. 2004, 19, 759. [Google Scholar] [CrossRef]
- Sameshima, T.; Watakabe, H.; Andoh, N.; Higashi, S. Pulsed laser annealing of thin silicon films. Jpn. J. Appl. Phys. 2006, 45, 2437. [Google Scholar] [CrossRef]
- Okada, T.; de Dieu Mugiraneza, J.; Shirai, K.; Suzuki, T.; Noguchi, T.; Matsushima, H.; Hashimoto, T.; Ogino, Y.; Sahota, E. Crystallization of Si thin film on flexible plastic substrate by Blue Multi-Laser Diode Annealing. Jpn. J. Appl. Phys. 2012, 51, 03CA02. [Google Scholar] [CrossRef]
- Ratzke, M.; Mchedlidze, T.; Arguirov, T.; Acharya, N.; Kittler, M.; Reif, J. Scanning probe studies of amorphous silicon subjected to laser annealing. Phys. Status Solidi C 2011, 8, 1351–1355. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Hiraiwa, M.; Koganezawa, T.; Yasuno, S.; Kuroki, S.-I. Formation of (100)-oriented large polycrystalline silicon thin films with multiline beam continuous-wave laser lateral crystallization. Jpn. J. Appl. Phys. 2018, 57, 031302. [Google Scholar] [CrossRef]
- Son, Y.D.; Son, N.K.; Kim, K.H.; Kim, E.H.; Oh, J.H.; Jang, J. 7.3: Giant-grain Poly-Si by CW Laser Annealing of a-Si with Cylindrical Microlens Array. In SID Symposium Digest of Technical Papers; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 76–79. [Google Scholar]
- Pyo, J.; Lee, B.; Ryu, H.-Y. Evaluation of Crystalline Volume Fraction of Laser-Annealed Polysilicon Thin Films Using Raman Spectroscopy and Spectroscopic Ellipsometry. Micromachines 2021, 12, 999. [Google Scholar] [CrossRef]
- Shrestha, M.; Wang, K.; Zheng, B.; Mokrzycki, L.; Fan, Q.H. Comparative Study of Furnace and Flash Lamp Annealed Silicon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition. Coatings 2018, 8, 97. [Google Scholar] [CrossRef]
- Wijesundara, M.; Azevedo, R. Silicon Carbide Microsystems for Harsh Environments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 22. [Google Scholar]
- Mehregany, M.; Zorman, C.A. SiC MEMS: Opportunities and challenges for applications in harsh environments. Thin Solid Film. 1999, 355, 518–524. [Google Scholar] [CrossRef]
- Sarro, P.M. Silicon carbide as a new MEMS technology. Sens. Actuators A Phys. 2000, 82, 210–218. [Google Scholar] [CrossRef]
- Cheung, R. Silicon Carbide Microelectromechanical Systems for Harsh Environments; World Scientific: Singapore, 2006. [Google Scholar]
- Ben Karoui, M.; Gharbi, R.; Alzaied, N.; Fathallah, M.; Tresso, E.; Scaltrito, L.; Ferrero, S. Effect of defects on electrical properties of 4H-SiC Schottky diodes. Mater. Sci. Eng. C 2008, 28, 799–804. [Google Scholar] [CrossRef]
- Pirri, C.F.; Ferrero, S.; Scaltrito, L.; Perrone, D.; Guastella, S.; Furno, M.; Richieri, G.; Merlin, L. Intrinsic 4H-SiC parameters study by temperature behaviour analysis of Schottky diodes. Microelectron. Eng. 2006, 83, 86–88. [Google Scholar] [CrossRef]
- Von Berg, J.; Ziermann, R.; Reichert, W.; Obermeier, E.; Eickhoff, M.; Krötz, G.; Thoma, U.; Boltshauser, T.; Cavalloni, C.; Nendza, J. High temperature piezoresistive β-SiC-on-SOI pressure sensor for combustion engines. In Materials Science Forum; U.S. Department of Energy: Oak Ridge, TN, USA, 1998. [Google Scholar]
- Pakula, L.; Yang, H.; Pham, H.; French, P.; Sarro, P. Fabrication of a CMOS compatible pressure sensor for harsh environments. J. Micromechanics Microengineering 2004, 14, 1478. [Google Scholar] [CrossRef]
- Young, D.J.; Du, J.; Zorman, C.A.; Ko, W.H. High-temperature single-crystal 3C-SiC capacitive pressure sensor. IEEE Sens. J. 2004, 4, 464–470. [Google Scholar] [CrossRef]
- Kuo, H.-I.; Zorman, C.A.; Mehregany, M. Fabrication and testing of single crystalline 3C-SiC devices using a novel SiC-on-insulator substrate. In Proceedings of the TRANSDUCERS’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, MA, USA, 8–12 June 2003; Digest of Technical Papers. pp. 742–745. [Google Scholar]
- Okojie, R.S.; Ned, A.A.; Kurtz, A.D.; Carr, W.N. α(6H)-SiC pressure sensors at 350 °C. In Proceedings of the International Electron Devices Meeting, San Francisco, CA, USA, 8–11 December 1996; Technical Digest. pp. 525–528. [Google Scholar]
- Okojie, R.; Nguyen, P.; Nguyen, V.; Savrun, E.; Lukco, D.; Buehler, J.; McCue, T. Failure mechanisms in MEMS based silicon carbide high temperature pressure sensors. In Proceedings of the IEEE International Reliability Physics Symposium Proceedings 45th Annual, Phoenix, AZ, USA, 15–19 April 2007; pp. 429–432. [Google Scholar]
- Okojie, R.S.; Ned, A.A.; Kurtz, A.D. Operation of α (6H)-SiC pressure sensor at 500 °C. Sens. Actuators A Phys. 1998, 66, 200–204. [Google Scholar] [CrossRef]
- Atwell, A.R.; Okojie, R.S.; Kornegay, K.T.; Roberson, S.L.; Beliveau, A. Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers. Sens. Actuators A Phys. 2003, 104, 11–18. [Google Scholar] [CrossRef]
- Lohner, K.A.; Chen, K.-S.; Ayon, A.A.; Mark Spearing, S. Microfabricated silicon carbide microengine structures. MRS Online Proc. Libr. 1998, 546, 85–90. [Google Scholar] [CrossRef]
- Yasseen, A.A.; Wu, C.H.; Zorman, C.A.; Mehregany, M. Fabrication and testing of surface micromachined polycrystalline SiC micromotors. IEEE Electron Device Lett. 2000, 21, 164–166. [Google Scholar] [CrossRef]
- Foti, G. Silicon carbide: From amorphous to crystalline material. Appl. Surf. Sci. 2001, 184, 20–26. [Google Scholar] [CrossRef]
- Gharbi, R.; Abdelkrim, M.; Fathallah, M.; Tresso, E.; Ferrero, S.; Pirri, C.F.; Brahim, T.M. Observation of negative capacitance in a-SiC:H/a-Si:H UV photodetectors. Solid-State Electron. 2006, 50, 367–371. [Google Scholar] [CrossRef]
- Hornberger, J.; Lostetter, A.B.; Olejniczak, K.; McNutt, T.; Lal, S.M.; Mantooth, A. Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 6–13 March 2004; pp. 2538–2555. [Google Scholar]
- Melzak, J.M. Silicon carbide for RF MEMS. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, 2003, Philadelphia, PA, USA, 8–13 June 2003; pp. 1629–1632. [Google Scholar]
- Scaltrito, L.; Porro, S.; Cocuzza, M.; Giorgis, F.; Pirri, C.F.; Mandracci, P.; Ricciardi, C.; Ferrero, S.; Sgorlon, C.; Richieri, G.; et al. Structural and electrical characterization of epitaxial 4H–SiC layers for power electronic device applications. Mater. Sci. Eng. B 2003, 102, 298–303. [Google Scholar] [CrossRef]
- Ferrero, S.; Porro, S.; Giorgis, F.; Pirri, C.F.; Mandracci, P.; Ricciardi, C.; Scaltrito, L.; Sgorlon, C.; Richieri, G.; Merlin, L. Defect characterization of 4H-SiC wafers for power electronic device applications. J. Phys. Condens. Matter 2002, 14, 13397. [Google Scholar] [CrossRef]
- Li, X.-B.; Shi, E.-W.; Chen, Z.-Z.; Xiao, B. Polytype formation in silicon carbide single crystals. Diam. Relat. Mater. 2007, 16, 654–657. [Google Scholar] [CrossRef]
- Shigematsu, I.; Kanayama, K.; Tsuge, A.; Nakamura, M. Analysis of Constituents Generated With Laser Machining of Si3N4 and SiC. J. Mater. Sci. Lett. 1998, 17, 737–739. [Google Scholar] [CrossRef]
- Sciti, D.; Bellosi, A. Laser micromachining of silicon carbide. Key Eng. Mater. 2002, 206–213, 305–308. [Google Scholar] [CrossRef]
- Lowndes, D.; Wood, R. Studies of pulsed laser melting and rapid solidification using amorphous silicon. J. Lumin. 1985, 30, 395–408. [Google Scholar] [CrossRef]
- Vivona, M.; Giannazzo, F.; Bellocchi, G.; Panasci, S.E.; Agnello, S.; Badalà, P.; Bassi, A.; Bongiorno, C.; Di Franco, S.; Rascunà, S.; et al. Effects of Excimer Laser Irradiation on the Morphological, Structural, and Electrical Properties of Aluminum-Implanted Silicon Carbide (4H-SiC). ACS Appl. Electron. Mater. 2022, 4, 4514–4520. [Google Scholar] [CrossRef]
- Calabretta, C.; Agati, M.; Zimbone, M.; Boninelli, S.; Castiello, A.; Pecora, A.; Fortunato, G.; Calcagno, L.; Torrisi, L.; La Via, F. Laser Annealing of P and Al Implanted 4H-SiC Epitaxial Layers. Materials 2019, 12, 3362. [Google Scholar] [CrossRef] [PubMed]
- Vivona, M.; Giannazzo, F.; Bellocchi, G.; Panasci, S.; Agnello, S.; Badalà, P.; Bassi, A.; Bongiorno, C.; Di Franco, S.; Rascunà, S.; et al. Exploring UV-Laser Effects on Al-Implanted 4H-SiC. Solid State Phenom. 2023, 342, 85–89. [Google Scholar] [CrossRef]
- Medvid, A.; Lytvyn, P.M. Dynamic of laser ablation in SiC. Mater. Sci. Forum 2004, 457–460, 411–414. [Google Scholar] [CrossRef]
- Palma, C.; Rossi, M.C.; Sapia, C. CW-laser crystallisation of amorphous SiC alloys. Electron. Lett. 1998, 34, 1430–1431. [Google Scholar] [CrossRef]
- Dolgaev, S.; Voronov, V.; Shafeev, G.; Ammar, C.F.-B.; Themlin, J.-M.; Cros, A.; Marine, W. Laser-induced fast etching and metallization of SiC ceramics. Appl. Surf. Sci. 1997, 109–110, 559–562. [Google Scholar] [CrossRef]
- Jandeleit, J.; Horn, A.; Weichenhain, R.; Kreutz, E.; Poprawe, R. Fundamental investigations of micromachining by nano-and picosecond laser radiation. Appl. Surf. Sci. 1998, 127–129, 885–891. [Google Scholar] [CrossRef]
- Farsari, M.; Filippidis, G.; Zoppel, S.; Reider, G.A.; Fotakis, C. Efficient femtosecond laser micromachining of bulk 3C-SiC. J. Micromechanics Microengineering 2005, 15, 1786. [Google Scholar] [CrossRef]
- Dong, Y.; Molian, P. In-situ formed nanoparticles on 3C–SiC film under femtosecond pulsed laser irradiation. Phys. Status Solidi A 2005, 202, 1066–1072. [Google Scholar] [CrossRef]
- Kühnapfel, S.; Amkreutz, D.; Klimm, C.; Nickel, N. Excimer laser crystallization of a-SiC x on glass. Can. J. Phys. 2014, 92, 709–712. [Google Scholar] [CrossRef]
- Coscia, U.; Ambrosone, G.; Gesuele, F.; Grossi, V.; Parisi, V.; Schutzmann, S.; Basa, D. Laser annealing study of PECVD deposited hydrogenated amorphous silicon carbon alloy films. Appl. Surf. Sci. 2007, 254, 984–988. [Google Scholar] [CrossRef]
- Baeri, P.; Spinella, C.; Reitano, R. Fast melting of amorphous silicon carbide induced by nanosecond laser pulse. Int. J. Thermophys. 1999, 20, 1211–1221. [Google Scholar] [CrossRef]
- Hedler, A.; Urban, S.; Falk, F.; Hobert, H.; Wesch, W. Excimer laser crystallization of amorphous silicon carbide produced by ion implantation. Appl. Surf. Sci. 2003, 205, 240–248. [Google Scholar] [CrossRef]
- Hishida, Y.; Watanabe, M.; Nakashima, K.; Eryu, O. Excimer laser annealing of ion-implanted 6H-silicon carbide. Mater. Sci. Forum 2000, 338–342, 873–876. [Google Scholar] [CrossRef]
- Urban, S.; Falk, F. Laser crystallization of amorphous SiC thin films on glass. Appl. Surf. Sci. 2001, 184, 356–361. [Google Scholar] [CrossRef]
- Boutopoulos, C.; Terzis, P.; Zergioti, I.; Kontos, A.; Zekentes, K.; Giannakopoulos, K.; Raptis, Y. Laser annealing of Al implanted silicon carbide: Structural and optical characterization. Appl. Surf. Sci. 2007, 253, 7912–7916. [Google Scholar] [CrossRef]
- Chou, S.; Chang, Y.; Weiner, K.; Sigmon, T.; Parsons, J. Annealing of implantation damage and redistribution of impurities in SiC using a pulsed excimer laser. Appl. Phys. Lett. 1990, 56, 530–532. [Google Scholar] [CrossRef]
- Ahmed, S.; Barbero, C.; Sigmon, T. Activation of ion implanted dopants in α-SiC. Appl. Phys. Lett. 1995, 66, 712–714. [Google Scholar] [CrossRef]
- Key, P.; Sands, D.; Schlaf, M.; Walton, C.; Anthony, C.; Brunson, K.; Uren, M. Infra-red reflectivity of ion-implanted and pulsed excimer laser irradiated 4H-SiC. Thin Solid Film. 2000, 364, 200–203. [Google Scholar] [CrossRef]
- Zoppel, S.; Farsari, M.; Merz, R.; Zehetner, J.; Stangl, G.; Reider, G.A.; Fotakis, C. Laser micro machining of 3C–SiC single crystals. Microelectron. Eng. 2006, 83, 1400–1402. [Google Scholar] [CrossRef]
- Sugioka, K.; Midorikawa, K. Novel technology for laser precision microfabrication of hard materials. In Proceedings of the First International Symposium on Laser Precision Microfabrication, Saitama, Japan, 14–16 November 2000; pp. 110–117. [Google Scholar]
- Lv, P.; Chen, Z.; Zhang, A.H. Effect of laser annealing on amorphous silicon carbide films prepared by PECVD. In Proceedings of the 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 5–8 January 2009; pp. 743–746. [Google Scholar]
- Basa, D.; Ambrosone, G.; Coscia, U.; Setaro, A. Crystallization of hydrogenated amorphous silicon carbon films with laser and thermal annealing. Appl. Surf. Sci. 2009, 255, 5528–5531. [Google Scholar] [CrossRef]
- Mazzamuto, F.; Halty, S.; Mori, Y. Silicon Carbide recrystallization mechanism by non-equilibrium melting laser anneal. Mater. Sci. Forum 2016, 858, 540–543. [Google Scholar] [CrossRef]
- De Cesare, G.; La Monica, S.; Maiello, G.; Masini, G.; Proverbio, E.; Ferrari, A.; Chitica, N.; Dinescu, M.; Alexandrescu, R.; Morjan, I.; et al. Crystallization of silicon carbide thin films by pulsed laser irradiation. Appl. Surf. Sci. 1996, 106, 193–197. [Google Scholar] [CrossRef]
- Paneerselvam, E.; Vasa, N.J.; Nakamura, D.; Palani, I.A.; Higashihata, M.; Ramachandra Rao, M.S.; Thomas, T. Pulsed laser deposition of SiC thin films and influence of laser-assisted annealing. Mater. Today Proc. 2021, 35, 312–317. [Google Scholar] [CrossRef]
- Goyes, C.; Sequeda, F.; Devia, A.; Ferrari, M.; Chiasera, A.; Fonthal, F.; Solarte, E. Effect of CO2 Laser Annealing on Microstructure of Sputtered Silicon Carbide Nano-scale Films. In Proceedings of the Society of Vacuum Coaters 50th Annual Technical Conference, Louisville, KY, USA, 3 May–28 April 2007. [Google Scholar]
- Ambrosone, G.; Coscia, U.; Lettieri, S.; Maddalena, P.; Minarini, C.; Parisi, V.; Schutzmann, S. Crystallization of hydrogenated amorphous silicon–carbon films by means of laser treatments. Appl. Surf. Sci. 2005, 247, 471–476. [Google Scholar] [CrossRef]
- Palma, C.; Sapia, C. Laser pattern-write crystallization of amorphous SiC alloys. J. Electron. Mater. 2000, 29, 607–610. [Google Scholar] [CrossRef]
- Houben, L.; Luysberg, M.; Hapke, P.; Carius, R.; Finger, F.; Wagner, H. Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos. Mag. A 1998, 77, 1447–1460. [Google Scholar] [CrossRef]
- Lannin, J.; Pilione, L.; Kshirsagar, S.; Messier, R.; Ross, R. Variable structural order in amorphous silicon. Phys. Rev. B Condens. Matter Mater. Phys. 1982, 26, 3506. [Google Scholar] [CrossRef]
- Choi, I.; Jeong, H.Y.; Shin, H.; Kang, G.; Byun, M.; Kim, H.; Chitu, A.M.; Im, J.S.; Ruoff, R.S.; Choi, S.-Y.; et al. Laser-induced phase separation of silicon carbide. Nat. Commun. 2016, 7, 13562. [Google Scholar] [CrossRef]
Ref. | Laser Type | Wavelength | Pulse Duration | Beam Profile | Environment | Energy/Power Density * |
---|---|---|---|---|---|---|
[35] | Yitterbium doped fiber | IR (1064 nm) | 200 ns | / | ambient conditions | / |
[36] | Ti-Sapphire | IR (800 nm) | 50–125 fs | / | / | 38–63 mJ/cm2 |
[38] | Ti-Sapphire | IR (800 nm) | / | / | / | 160–305 mJ/cm2 |
[37] | Yb:KGW | IR(800 nm) | 40–200 fs | Gaussian | / | 49–69 mJ/cm2 |
[39] | Yb:KGW | IR(1026 nm) | 230 fs | Gaussian | / | 150 mJ/cm2 |
[45] | Ti-Sapphire | IR (800 nm) | 50 fs | / | / | / |
[34] | Ti-Sapphire | UV (400 nm) | 50 fs | / | / | 20–30 mJ/cm2 |
[33] | Nd:YVO4 | UV (355 nm) | 12–15 ns | Gaussian | / | 240 mJ/cm2 |
[33] | Nd:YVO4 | Green (532 nm) | 12–15 ns | Gaussian | / | 478 mJ/cm2 |
[53] | Nd:YVO4 | Green (532 nm) | CW | Gaussian in short axis, top-hat in long axis | / | / |
[44] | Solid-state diode | Blue (440 nm) | CW | Elliptically | / | 4.61 W |
[54] | GaN-based diode | Blue (450 nm) | CW | Gaussian | room T, N2 atmosphere | / |
[54] | Nd:YAG | Green (532 nm) | 30 ns | rectangular | room T, N2 atmosphere | 153 mJ/cm2 |
Ref. | Laser Type | Wavelength | Pulse Duration | Beam Profile | Environment | Energy/Power Density * |
---|---|---|---|---|---|---|
[104] | KrF excimer | UV (248 nm) | Nanosecond (30 ns) | / | Room T, air | 123–242 mJ/cm2 |
[94] | KrF excimer | UV (248 nm) | Nanosecond (30 ns) | / | Room T, air | 150–900 mJ/cm2 |
[105] | LASSE excimer | UV (308 nm) | Nanosecond (160 ns) | / | / | 3200 mJ/cm2 |
[96] | KrF excimer | UV (248 nm) | Nanosecond (25 ns) | / | T = 400 °C, air | 100–1000 mJ/cm2 |
[106] | KrF excimer | UV (248 nm) | Nanosecond (20 ns) | / | Ar atmosphere | 200 mJ/cm2 |
[95] | XeCl excimer | UV (308 nm) | / | / | Room T, vacuum | / |
[82] | XeCl excimer | UV (308 nm) | Nanosecond (160 ns) | / | / | 1000–2800 mJ/cm2 |
[83] | XeCl excimer | UV (308 nm) | Nanosecond (30 ns) | / | / | 500–600 mJ/cm2 |
[107] | Nd:YAG | UV (355 nm) | Nanosecond (10 ns) | Gaussian | Ar atmosphere | 100–1200 J/cm2 |
[109] | KrF excimer | UV (248 nm) | Nanosecond (30 ns) | / | Room T, air | 242 mJ/cm2 |
[109] | Nd:YAG | Green (532 nm) | Nanosecond (10 ns) | / | Room T, air | 242 mJ/cm2 |
[93] | q-switched Ruby | Red (694 nm) | Nanosecond (25 ns) | / | / | 100–1000 mJ/cm2 |
[110] | Argon laser | Green (514 nm) | Continuous wave | Gaussian | Room T, air | 8 × 105 W/cm2 |
[5] | Nd:YLF | Green (527 nm) | Nanosecond (200 ns) | / | N2 atmosphere | 1170–2500 J/cm2 |
[108] | CO2 | DIR (1060 nm) | Continuous wave | Gaussian | Vacuum | 5.7 W/cm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arduino, D.; Stassi, S.; Spano, C.; Scaltrito, L.; Ferrero, S.; Bertana, V. Silicon and Silicon Carbide Recrystallization by Laser Annealing: A Review. Materials 2023, 16, 7674. https://doi.org/10.3390/ma16247674
Arduino D, Stassi S, Spano C, Scaltrito L, Ferrero S, Bertana V. Silicon and Silicon Carbide Recrystallization by Laser Annealing: A Review. Materials. 2023; 16(24):7674. https://doi.org/10.3390/ma16247674
Chicago/Turabian StyleArduino, Daniele, Stefano Stassi, Chiara Spano, Luciano Scaltrito, Sergio Ferrero, and Valentina Bertana. 2023. "Silicon and Silicon Carbide Recrystallization by Laser Annealing: A Review" Materials 16, no. 24: 7674. https://doi.org/10.3390/ma16247674
APA StyleArduino, D., Stassi, S., Spano, C., Scaltrito, L., Ferrero, S., & Bertana, V. (2023). Silicon and Silicon Carbide Recrystallization by Laser Annealing: A Review. Materials, 16(24), 7674. https://doi.org/10.3390/ma16247674