Effect of Aspect Ratio of Ferroelectric Nanofilms on Polarization Vortex Stability under Uniaxial Tension or Compression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase Field Theory
2.2. Numerical Model
3. Results
3.1. Instability of Polarization Vortices under the Action of Compressive Stress
3.2. Instability of Polarization Vortices under the Action of Tensile Stress
4. Discussion
4.1. Effect of Vortex Aspect Ratio on Vortex Stability
4.2. Effect of Vortex Long Axis on Vortex Stability
5. Conclusions
- The aspect ratio of nanofilms directly shapes the initial polarization vortex, influencing its stability. The critical compressive stress rises with the vortex shape ratio, whereas the critical tensile stress initially weakens, then strengthens, and finally weakens with the shape ratio, reaching a maximum. This maximum critical tensile stress decreases with temperature elevation.
- The stability of polarization vortices depends on the initial orientation of the vortex’s major axis. If, during instability caused by mechanical loads, the vortex’s major axis remains parallel to the initial axis, its resistance increases with decreasing nanofilm aspect ratio. Conversely, if the vortex’s major axis becomes perpendicular post-instability, resistance decreases with a decreasing aspect ratio of the nanofilm.
- During the process of vortex instability, if there is a change in the long-axis direction of the vortex and this change is caused by the continuous variation of the vortex shape ratio, then in such a scenario of vortex instability, the larger the initial vortex shape ratio, the stronger the vortex’s resistance to external loads.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadav, A.K.; Nelson, C.T.; Hsu, S.L.; Hong, Z.; Clarkson, J.D.; Schlepuetz, C.M.; Damodaran, A.R.; Shafer, P.; Arenholz, E.; Dedon, L.R.; et al. Observation of polar vortices in oxide superlattices. Nature 2016, 530, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.L.; Zhu, Y.L.; Ma, X.L.; Borisevich, A.Y.; Morozovska, A.N.; Eliseev, E.A.; Wang, W.Y.; Wang, Y.J.; Xu, Y.B.; Zhang, Z.D.; et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 2015, 348, 547–551. [Google Scholar] [CrossRef]
- Lich, L.V.; Dinh, V.H. Formation of polarization needle-like domain and its unusual switching in compositionally graded ferroelectric thin films: An improved phase field model. RSC Adv. 2019, 9, 7575–7586. [Google Scholar] [CrossRef] [PubMed]
- Ivry, Y.; Chu, D.P.; Scott, J.F.; Durkan, C. Flux closure vortexlike domain structures in ferroelectric thin films. Phys. Rev. Lett. 2010, 104, 207602. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.B.; Zhou, C.M.; Chen, H.; Cheong, S.W.; Li, Y.W.; Tao, X.; Zhang, L. Novel Geometric Ferroelectric EuInO3 Single Crystals with Topological Vortex Domains. Cryst. Growth Des. 2023, 23, 1980–1986. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Li, Q.A.; Liang, Y.; He, X.Q.; Wu, J.G.; Fan, H.D.; Tian, X. Hierarchical-vortex polarization domain pattern in nano polycrystalline ferroelectric. J. Adv. Dielectr. 2022, 12, 2250009. [Google Scholar] [CrossRef]
- Yadav, A.K.; Nguyen, K.X.; Hong, Z.J.; Garcia-Fernandez, P.; Aguado-Puente, P.; Nelson, C.T.; Das, S.; Prasad, B.; Kwon, D.; Cheema, S.; et al. Spatially resolved steady-state negative capacitance. Nature 2019, 565, 468–471. [Google Scholar] [CrossRef]
- Naumov, I.; Bellaiche, L.; Fu, H.X. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 2004, 432, 737–740. [Google Scholar] [CrossRef]
- Balke, N.; Winchester, B.; Ren, W.; Chu, Y.H.; Morozovska, A.N.; Eliseev, E.A.; Huijben, M.; Vasudevan, R.K.; Maksymovych, P.; Britson, J.; et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 2012, 8, 81–88. [Google Scholar] [CrossRef]
- Rodriguez, B.J.; Gao, X.S.; Liu, L.F.; Lee, W.; Naumov, I.I.; Bratkovsky, A.M.; Hesse, D.; Alexe, M. Vortex Polarization States in Nanoscale Ferroelectric Arrays. Nano Lett. 2009, 9, 1127–1131. [Google Scholar] [CrossRef]
- Yuan, S.; Chen, W.J.; Ma, L.L.; Ji, Y.; Xiong, W.M.; Liu, J.Y.; Liu, Y.L.; Wang, B.; Zheng, Y. Defect-mediated vortex multiplication and annihilation in ferroelectrics and the feasibility of vortex switching by stress. Acta Mater. 2018, 148, 330–343. [Google Scholar] [CrossRef]
- Lich, L.V.; Shimada, T.; Wang, J.; Dinh, V.H.; Bui, T.Q.; Kitamura, T. Switching the chirality of a ferroelectric vortex in designed nanostructures by a homogeneous electric field. Phys. Rev. B 2017, 96, 134119. [Google Scholar] [CrossRef]
- Su, Y.; Du, J.N. Existence conditions for single-vertex structure of polarization in ferroelectric nanoparticles. Appl. Phys. Lett. 2009, 95, 012903. [Google Scholar] [CrossRef]
- Mostovoy, M. Electrically-Excited Motion of Topological Defects in Multiferroic Materials. J. Phys. Soc. Jpn. 2023, 92, 081005. [Google Scholar] [CrossRef]
- Chen, P.; Tan, C.B.; Jiang, Z.X.; Gao, P.; Sun, Y.W.; Wang, L.F.; Li, X.; Zhu, R.; Liao, L.; Hou, X.; et al. Electrically driven motion, destruction, and chirality change of polar vortices in oxide superlattices. Sci. China-Phys. Mech. Astron. 2022, 65, 237011. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y. Stability of polarization vortices within two interacting ferroelectric nanoparticles. Phys. Lett. A 2011, 375, 1019–1022. [Google Scholar] [CrossRef]
- Hong, Z.J.; Damodaran, A.R.; Xue, F.; Hsu, S.L.; Britson, J.; Yadav, A.K.; Nelson, C.T.; Wang, J.-J.; Scott, J.F.; Martin, L.W.; et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 2017, 17, 2246–2252. [Google Scholar] [CrossRef]
- Du, K.; Zhang, M.; Dai, C.; Zhou, Z.N.; Xie, Y.W.; Ren, Z.H.; Tian, H.; Chen, L.Q.; Van Tendeloo, G.; Zhang, Z. Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution. Nat. Commun. 2019, 10, 4864. [Google Scholar] [CrossRef]
- Jiang, W.K.; Yang, X.H.; Peng, D.; Tian, X.B. Size and temperature-dependent stability of polarization vortex in PbTiO3 nanosheet under uniaxial tension or compression. Philos. Mag. 2022, 102, 1400–1418. [Google Scholar] [CrossRef]
- Jiang, W.K.; Yang, X.H.; Peng, D.; Tian, X.B. Stability of polarisation vortex in ferroelectric nanofilm under stress or curled electric field. Philos. Mag. 2021, 101, 1965–1984. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Zhu, Y.; Ma, X. Entangled polarizations in ferroelectrics: A focused review of polar topologies. Acta Mater. 2023, 243, 118485. [Google Scholar] [CrossRef]
- Chen, W.J.; Zheng, Y. Vortex switching in ferroelectric nanodots and its feasibility by a homogeneous electric field: Effects of substrate, dislocations and local clamping force. Acta Mater. 2015, 88, 41–54. [Google Scholar] [CrossRef]
- Yang, S.M.; Yoon, J.G.; Noh, T.W. Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors. Curr. Appl. Phys. 2011, 11, 1111–1125. [Google Scholar] [CrossRef]
- Chen, W.J.; Zheng, Y.; Wang, B.; Liu, J.Y. Coexistence of toroidal and polar domains in ferroelectric systems: A strategy for switching ferroelectric vortex. J. Appl. Phys. 2014, 115, 214106. [Google Scholar] [CrossRef]
- Wang, M.Y.; Liu, D.; Wang, J.; Liang, D.S.; Huang, H.B. Phase-field simulations of topological conservation in multi-vortex induced by surface charge in BiFeO3 thin films. J. Adv. Dielectr. 2023. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Jafri, H.M.; Wang, X.Y.; Shi, X.M.; Liang, D.S.; Yang, C.; Cheng, X.; Huang, H. Phase-field simulations of vortex chirality manipulation in ferroelectric thin films. NPJ Quantum Mater. 2022, 7, 34. [Google Scholar] [CrossRef]
- Jiang, Z.X.; Wang, J. Stability of chiral polarization vortex in strained ferroelectric superlattices. J. Appl. Phys. 2022, 131, 164101. [Google Scholar] [CrossRef]
- Shu, W.L.; Wang, J.; Zhang, T.Y. Effect of grain boundary on the electromechanical response of ferroelectric polycrystals. J. Appl. Phys. 2012, 112, 064108. [Google Scholar] [CrossRef]
- Li, Y.L.; Chen, L.Q. Temperature-strain phase diagram for BaTiO3 thin films. Appl. Phys. Lett. 2006, 88, 072905. [Google Scholar] [CrossRef]
- Wang, Y.L.; Tagantsev, A.K.; Damjanovic, D.; Setter, N.; Yarmarkin, V.K.; Sokolov, A.I. Anharmonicity of BaTiO3 single crystals. Phys. Rev. B 2006, 73, 132103. [Google Scholar] [CrossRef]
- Hlinka, J.; Marton, P. Phenomenological model of a 90 degrees domain wall in BaTiO3-type ferroelectrics. Phys. Rev. B 2006, 74, 104104. [Google Scholar] [CrossRef]
- Cao, W.; Cross, L.E. Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys. Rev. B 1991, 44, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.L.; Chen, L.Q. Three-dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc. 1998, 81, 492–500. [Google Scholar] [CrossRef]
- Naumov, I.; Bratkovsky, A.M. Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. Phys. Rev. Lett. 2008, 101, 107601. [Google Scholar] [CrossRef] [PubMed]
- Woo, C.H.; Zheng, Y. Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional. Appl. Phys. A 2008, 91, 59–63. [Google Scholar] [CrossRef]
- Haun, M.J.; Furman, E.; Jang, S.J.; McKinstry, H.A.; Cross, L.E. Thermodynamic theory of PbTiO3. J. Appl. Phys. 1987, 62, 3331–3338. [Google Scholar] [CrossRef]
- Chen, W.J.; Zheng, Y.; Wang, B. Vortex domain structure in ferroelectric nanoplatelets and control of its transformation by mechanical load. Sci. Rep. 2012, 2, 796. [Google Scholar] [CrossRef]
- Jiang, W.K.; Yang, X.H.; Peng, D. Intensity characterisation of polarisation vortex formation and evolution in ferroelectric nanofilms. Philos. Mag. 2021, 101, 673–688. [Google Scholar] [CrossRef]
- Dinh-Van, H.; Lich, L.V.; Bui, T.Q.; Le, T.V.; Nguyen, T.G.; Shimada, T.; Kitamura, T. Intrinsic and extrinsic effects on the electrotoroidic switching in a ferroelectric notched nanodot by a homogeneous electric field. Phys. Chem. Chem. Phys. 2019, 21, 25011–25022. [Google Scholar] [CrossRef]
- Van Lich, L.; Le, M.-T.; Bui, T.Q.; Nguyen, T.-T.; Shimada, T.; Kitamura, T.; Nguyen, T.-G.; Dinh, V.-H. Asymmetric flux-closure domains in compositionally graded nanoscale ferroelectrics and unusual switching of toroidal ordering by an irrotational electric field. Acta Mater. 2019, 179, 215–223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Wang, S.; Yang, X.; Yang, J. Effect of Aspect Ratio of Ferroelectric Nanofilms on Polarization Vortex Stability under Uniaxial Tension or Compression. Materials 2023, 16, 7699. https://doi.org/10.3390/ma16247699
Jiang W, Wang S, Yang X, Yang J. Effect of Aspect Ratio of Ferroelectric Nanofilms on Polarization Vortex Stability under Uniaxial Tension or Compression. Materials. 2023; 16(24):7699. https://doi.org/10.3390/ma16247699
Chicago/Turabian StyleJiang, Wenkai, Sen Wang, Xinhua Yang, and Junsheng Yang. 2023. "Effect of Aspect Ratio of Ferroelectric Nanofilms on Polarization Vortex Stability under Uniaxial Tension or Compression" Materials 16, no. 24: 7699. https://doi.org/10.3390/ma16247699
APA StyleJiang, W., Wang, S., Yang, X., & Yang, J. (2023). Effect of Aspect Ratio of Ferroelectric Nanofilms on Polarization Vortex Stability under Uniaxial Tension or Compression. Materials, 16(24), 7699. https://doi.org/10.3390/ma16247699