Polyborosilazanes with Controllable B/N Ratio for Si–B–C–N Ceramics
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization
2.2.1. Elemental Analysis
2.2.2. Structure Analysis and Microphase Evolution
2.2.3. Study on Polymer-to-Ceramic Transformation
2.2.4. Morphology
2.3. Synthesis of the Polymers
2.3.1. Synthesis of the Monomer CB
2.3.2. Synthesis of Polymers
2.4. Pyrolysis of the Polymers
3. Results and Discussion
3.1. Polymer Synthesis and Characterization
3.2. Polymer-to-Ceramic Conversion
3.3. Structural Evolution of the Polymer-Derived Ceramics
3.4. Mechanical Properties of the Si–B–C–N Ceramics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Items |
FTIR | Fourier Transform Ioncyclotron Resonance |
NMR | Nuclear Magnetic Resonance |
TGA | Thermal Gravimetric Analyzer |
MS | Mass Spectrometry |
XPS | X-ray Photoelectron Spectroscopy |
XRD | X-ray Diffraction |
TEM | Transmission Electron Microscope |
SEM | Scanning Electron Microscope |
HMDS | Hexamethyldisilazane |
DCMS | Dicholoromethlsilane |
THF | Tetrahydrofuran |
SPS | Spark Plasma Sintering |
References
- Viard, A.; Fonblanc, D.; Lopez-Ferber, D.; Schmidt, M.; Lale, A.; Durif, C.; Balestrat, M.; Rossignol, F.; Weinmann, M.; Riedel, R.; et al. Polymer derived Si-B-C-N ceramics: 30 years of research. Adv. Eng. Mater. 2018, 20, 1800360. [Google Scholar]
- Zhang, Q.; Yang, Z.H.; Jia, D.C.; Chen, Q.; Zhou, Y. Synthesis and structural evolution of dual-boron-source-modified polysilazane derived SiBCN ceramics. New J. Chem. 2016, 40, 7034–7042. [Google Scholar]
- Müller, U.; Weinmann, M.; Jansen, M. Cl2MeSi–NH–BCl2 and ClMe2Si–NH–BCl2: Novel processable single source precursors of amorphous Si/C/B/N ceramics. J. Mater. Chem. 2008, 18, 3671–3679. [Google Scholar] [CrossRef]
- Baldus, H.P.; Jansen, M. Novel high-performance ceramics-amorphous inorganic networks from molecular precursors. Angew. Chem. Int. Ed. Engl. 1997, 36, 329–343. [Google Scholar] [CrossRef]
- Schmidt, W.R.; Narsavage-Heald, D.M.; Jones, D.M.; Marchetti, P.S.; Raker, D.; Maciel, G.E. Poly(borosilazane) precursors to ceramic nanocomposites. Chem. Mater. 1999, 11, 1455–1464. [Google Scholar]
- Riedel, R.; Kienzle, A.; Dressler, W.; Ruwisch, L.; Bill, J.; Aldinger, F. A silicoboron carbonitride ceramic stable to 2000 °C. Nature 1996, 382, 796–798. [Google Scholar] [CrossRef]
- Viard, A.; Fonblanc, D.; Schmidt, M.; Lale, A.; Salameh, C.; Soleilhavoup, A.; Wynn, M.; Champagne, P.; Cerneaux, S.; Babonneau, F.; et al. Molecular chemistry and engineering of boron-podified polyorganosilazanes as new processable and functional SiBCN precursors. Chemistry 2017, 23, 9076–9090. [Google Scholar] [PubMed]
- Ji, X.Y.; Shao, C.W.; Wang, H.; Wang, J.; Cheng, J.; Long, X.; Mao, T. A simple and efficient method for the synthesis of SiBNC ceramics with different Si/B atomic ratios. Ceram. Int. 2017, 43, 7469–7476. [Google Scholar] [CrossRef]
- Thévenot, F. Boron carbide—A comprehensive review. J. Eur. Ceram. Soc. 1990, 6, 205–225. [Google Scholar]
- Kobayashi, T.; Yoshida, K.; Yano, T. Effects of heat-treatment temperature and starting composition on morphology of boron carbide particles synthesized by carbothermal reduction. Ceram. Int. 2013, 39, 597–603. [Google Scholar] [CrossRef]
- Ding, D.H.; Bai, B.; Xiao, G.Q.; Luo, J.; Chong, X. Molten-salt-assisted combustion synthesis of B4C powders: Synthesis mechanism and dielectric and electromagnetic wave absorbing properties. Ceram. Int. 2021, 47, 18708–18719. [Google Scholar]
- Kokado, K.; Tokoro, Y.; Chujo, Y. Luminescent m-carborane-based π-conjugated polymer. Macromolecules 2009, 42, 2925–2930. [Google Scholar] [CrossRef]
- Mocaer, D.; Pailler, R.; Naslain, R.; Richard, C.; Pillot, J.P.; Dunogues, J.; Delverdier, O.; Monthioux, M. Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors. J. Mater. Sci. 1993, 28, 2639–2653. [Google Scholar] [CrossRef]
- Li, W.H.; Wang, J.; Xie, Z.F. A novel polyborosilazane for high-temperature amorphous Si–B–N–C ceramic fibres. Ceram. Int. 2012, 38, 6321–6326. [Google Scholar] [CrossRef]
- Gottardo, L.; Bernard, S.; Gervais, C.; Weinmann, M.; Miele, P. Study of the intermediate pyrolysis steps and mechanism identification of polymer-derived SiBCN ceramics. J. Mater. Chem. 2012, 22, 17923–17933. [Google Scholar]
- Chen, Q.Q.; Jia, D.C.; Liang, B.; Yang, Z.; Zhou, Y.; Li, D.; Riedel, R.; Zhang, T.; Gao, C. Electrospinning of pure polymer-derived SiBCN nanofibers with high yield. Ceram. Int. 2021, 47, 10958–10964. [Google Scholar] [CrossRef]
- Patel, M.; Swain, A.C.; Cunningham, J.L.; Maxwell, R.S.; Chinn, S.C. The stability of poly(m-carborane-siloxane) elastomers exposed to heat and gamma radiation. Polym. Degrad. Stab. 2006, 91, 548–554. [Google Scholar] [CrossRef]
- Kimura, H.; Okita, K.; Ichitani, M.; Sugimoto, T.; Kuroki, S.; Ando, I. Structural study of silyl-carborane hybrid diethynylbenzene-silylene polymers by high-resolution solid-state 11B, 13C, and 29Si NMR spectroscopy. Chem. Mater. 2002, 15, 355–362. [Google Scholar]
- Guimon, C.; Gonbeau, D.; Pfisterguillouzo, G.; Dugne, O.; Guette, A.; Naslain, R.; Lahaye, M. XPS study of BN thin films deposited by CVD on SiC plane substrates. Surf. Interface Anal. 1990, 16, 440–445. [Google Scholar] [CrossRef]
- Wittberg, T.N.; Hoenigman, J.R.; Moddeman, W.E.; Cothern, C.R.; Gulett, M.R. AES and XPS of silicon nitride films of varying refractive indices. J. Vac. Sci. Technol. 1978, 15, 348–352. [Google Scholar] [CrossRef]
- Parrill, T.M.; Chung, Y.W. Surface analysis of cubic silicon carbide (001). Surf. Sci. 1991, 243, 96–112. [Google Scholar]
- Gouin, X.; Grange, P.; Bois, L.; Lharidon, P.; Laurent, Y. Characterization of the nitridation process of boric-acid. J. Alloys Compd. 1995, 224, 22–28. [Google Scholar] [CrossRef]
- Li, D.X.; Yang, Z.H.; Jia, D.C.; Cai, D.; Wang, S.; Chen, Q.; Zhou, Y.; Yu, D.; Tian, Y. Boron-dependent microstructural evolution, thermal stability, and crystallization of mechanical alloying derived SiBCN. J. Am. Ceram. Soc. 2018, 101, 3205–3221. [Google Scholar]
Ceramics ※ | Si (wt%) | B (wt%) | C (wt%) | N (wt%) | B/N Molar Ratio | Formula |
---|---|---|---|---|---|---|
SiBCN0:1 | 24.4 | 50.0 | 20.5 | 2.2 | 28.4:1 | Si5.45B28.4C8.13N |
SiBCN3:1 | 37.7 | 33.0 | 19.0 | 9.1 | 4.62:1 | Si2.07B4.62C2.44N |
SiBCN6:1 | 41.2 | 27.0 | 19.8 | 11.6 | 2.96:1 | Si1.77B2.96C1.99N |
SiBCN8:1 | 47.9 | 16.8 | 19.3 | 13.1 | 1.62:1 | Si1.82B1.62C1.71N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, Y.; Li, T.; Zhao, Y.; Duan, L.; Zhang, J.; Chen, K.; He, L.; Huang, Q.; Zhao, C.; Song, Y. Polyborosilazanes with Controllable B/N Ratio for Si–B–C–N Ceramics. Materials 2023, 16, 1053. https://doi.org/10.3390/ma16031053
Dang Y, Li T, Zhao Y, Duan L, Zhang J, Chen K, He L, Huang Q, Zhao C, Song Y. Polyborosilazanes with Controllable B/N Ratio for Si–B–C–N Ceramics. Materials. 2023; 16(3):1053. https://doi.org/10.3390/ma16031053
Chicago/Turabian StyleDang, Yanpei, Tianhao Li, Yangzhong Zhao, Liantai Duan, Jianning Zhang, Ke Chen, Liu He, Qing Huang, Chuanzhuang Zhao, and Yujie Song. 2023. "Polyborosilazanes with Controllable B/N Ratio for Si–B–C–N Ceramics" Materials 16, no. 3: 1053. https://doi.org/10.3390/ma16031053
APA StyleDang, Y., Li, T., Zhao, Y., Duan, L., Zhang, J., Chen, K., He, L., Huang, Q., Zhao, C., & Song, Y. (2023). Polyborosilazanes with Controllable B/N Ratio for Si–B–C–N Ceramics. Materials, 16(3), 1053. https://doi.org/10.3390/ma16031053