SbI3·3S8: A Novel Promising Inorganic Adducts Crystal for Second Harmonic Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of SbI3·3S8 Crystal
2.3. Characterization Techniques
3. Results
4. Plausible Mechanism of Formation of SbI3·3S8 Crystal in CH2Cl2
- (i)
- First, due to the high reactivity tendency of iodine (I) and antimony (Sb), they easily react with each other in dichloromethane (CH2Cl2) to form antimony tri-iodide (SbI3).
- (ii)
- At the same time, during ultrasonication, CH2Cl2 will break down into various reactive radical species [31]. The steps of radical formation are given below:
- (iii)
- In the next step, the highly reactive radicals react with iodine molecules of SbI3 molecules through the formation of an adduct compound. The intermediate compounds are very unstable and tend to react further.
- (iv)
- On the other side, when ultrasonic waves passed through a liquid medium, they stretched and compressed the molecules in which they were transmitted. During the stretching period, negative pressure is created on the liquid medium and at a specific pressure; they produced microbubbles when the pressure surpassed the intermolecular binding forces of liquid molecules. In the next cycles of stretching and compression, these microbubbles grew continuously and decomposed near the surface of the elemental sulfur. During the decomposition of these bubbles, they generated high temperature and pressure, which is responsible for the cleavage of elemental sulfur into small S8 molecules [32].
- (v)
- These highly reactive small S8 molecules can gradually diffuse near the unstable SbI3·3CHCl2 adduct compound, and they reacted through a substitution reaction to form SbI3·3S8 nuclei.
- (vi)
- The formed nuclei are unstable in the solvent medium, and they always have a propensity to grow as SbI3·3S8 crystals along a specific axis by sharing lone pair electrons of Sb molecules. Room temperature evaporation of the solvent (CH2Cl2), as well as the attraction of lone pairs, helps in the formation of a one-dimensional crystal structure by pushing the nuclei to each other. Finally, we obtained the grown crystal, which is one-dimensional and highly anisotropic in nature [27,33].
5. Second Harmonic Generation of Light in the SbI3·3S8
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, L.; Liang, F.; Jiang, X.; Lin, Z.; Chen, C. First-principles design and simulations promote the development of nonlinear optical crystals. Acc. Chem. Res. 2019, 53, 209–217. [Google Scholar] [CrossRef]
- Kang, L.; Lin, Z. Deep-ultraviolet nonlinear optical crystals: Concept development and materials discovery. Light Sci. Appl. 2022, 11, 201. [Google Scholar] [CrossRef]
- Mutailipu, M.; Poeppelmeier, K.R.; Pan, S. Borates: A rich source for optical materials. Chem. Rev. 2020, 121, 1130–1202. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Li, Z.; Wang, K.; Zhang, J.; Liang, L.; Li, L.; Ren, Y.; Liu, Y.; Liu, M.; Xue, D. Growth and Optical Properties of the Whole System of Li (Mn1−x, Nix) PO4 (0 ≤ x ≤ 0.5) Single Crystals. Materials 2021, 14, 7233. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, S.; Luo, J. The role of cations in second-order nonlinear optical materials based on π-conjugated [BO3]3− groups. Coord. Chem. Rev. 2018, 366, 1–28. [Google Scholar] [CrossRef]
- Guo, S.-P.; Chi, Y.; Guo, G.-C. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44–57. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, J.; Chen, X.; Zeng, R. Effect of Temperature on Ultrasonic Nonlinear Parameters of Carbonated Concrete. Materials 2022, 15, 8797. [Google Scholar] [CrossRef]
- Samoc, A.; Samoc, M.; Luther-Davies, B.; Kelly, J.; Krausz, E.; Willis, A. New second-order nonlinear octupolar materials. Mol. Cryst. Liq. Cryst. 2004, 415, 179–195. [Google Scholar] [CrossRef]
- Lin, H.; Zheng, Y.J.; Hu, X.N.; Chen, H.; Yu, J.S.; Wu, L.M. Non-centrosymmetric Selenides AZn4In5Se12 (A = Rb, Cs): Synthesis, Characterization and Nonlinear Optical Properties. Chem. Asia. J. 2017, 12, 453–458. [Google Scholar] [CrossRef]
- Liu, K.; Kang, Y.; Tao, H.; Zhang, X.; Xu, Y. Effect of Se on Structure and Electrical Properties of Ge-As-Te Glass. Materials 2022, 15, 1797. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.; Kanatzidis, M.G. Metal chalcogenides: A rich source of nonlinear optical materials. Chem. Mater. 2014, 26, 849–869. [Google Scholar] [CrossRef]
- Yu, H.; Koocher, N.Z.; Rondinelli, J.M.; Halasyamani, P.S. Pb2BO3I: A Borate Iodide with the Largest Second-Harmonic Generation (SHG) Response in the KBe2BO3F2 (KBBF) Family of Nonlinear Optical (NLO) Materials. Angew. Chem. Int. Ed. 2018, 57, 6100–6103. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Guo, S.-P.; Liu, B.-W.; Xue, H.-G.; Guo, G.-C. Second-order nonlinear optical crystals with mixed anions. Coord. Chem. Rev. 2018, 374, 464–496. [Google Scholar] [CrossRef]
- Sun, Z.-D.; Chi, Y.; Xue, H.-G.; Guo, S.-P. A Series of Pentanary Inorganic Supramolecular Sulfides (A3X) [MB12(MS4)3] (A = K, Cs; X = Cl, Br, I; M = Ga, In, Gd) Featuring B12S12 Clusters. Inorg. Chem. Front. 2017, 4, 1841–1847. [Google Scholar] [CrossRef]
- Scherbak, S.A.; Kaasik, V.P.; Zhurikhina, V.V.; Lipovskii, A.A. Poling of Glasses Using Resistive Barrier Discharge Plasma. Materials 2022, 15, 8620. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.; Muthurakku, U.R.; Sivaperuman, K. An Overview on Recent Trends in Deep-Ultraviolet (DUV) and Ultraviolet (UV) Nonlinear Optical Crystals. ChemistrySelect 2021, 6, 10688–10716. [Google Scholar] [CrossRef]
- Mutailipu, M.; Yang, Z.; Pan, S. Toward the enhancement of critical performance for deep-ultraviolet frequency-doubling crystals utilizing covalent tetrahedra. Acc. Mater. Res. 2021, 2, 282–291. [Google Scholar] [CrossRef]
- Janarthanan, S.; Samuel, R.S.; Selvakumar, S.; Rajan, Y.; Jayaraman, D.; Pandi, S. Growth and characterization of organic NLO crystal: β-naphthol. J. Mater. Sci. Technol. 2011, 27, 271–274. [Google Scholar] [CrossRef]
- Almuqrin, A.H.; Gangareddy, J.; Hivrekar, M.M.; Pramod, A.; Sayyed, M.; Keshavamurthy, K.; Fatima, N.; Jadhav, K. Nonlinear Optical Limiting and Radiation Shielding Characteristics of Sm2O3 Doped Cadmium Sodium Lithium Borate Glasses. Materials 2022, 15, 2330. [Google Scholar] [CrossRef]
- Lu, Z.-T.; Sun, Z.-D.; Chi, Y.; Xue, H.-G.; Guo, S.-P. Balanced second-order nonlinear optical properties of adducts CHI3·(S8)3 and AsI3·(S8)3: A systematic survey. Inorg. Chem. 2019, 58, 4619–4625. [Google Scholar] [CrossRef]
- Shui, Q.R.; Fu, R.B.; Zhou, Z.Q.; Ma, Z.J.; Tang, H.X.; Wu, X.T. A Lead Mixed Halide with Three Different Coordinated Anions and Strong Second-Harmonic Generation Response. Chem. Euro. J. 2022, 28, e202103687. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, R. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int. Rev. Phys. Chem. 1989, 8, 65–91. [Google Scholar] [CrossRef]
- Yan, M.; Xue, H.-G.; Guo, S.-P. Recent achievements in lone-pair cation-based infrared second-order nonlinear optical materials. Cryst. Growth Des. 2020, 21, 698–720. [Google Scholar] [CrossRef]
- Xiao, J.-R.; Yang, S.-H.; Feng, F.; Xue, H.-G.; Guo, S.-P. A review of the structural chemistry and physical properties of metal chalcogenide halides. Coord. Chem. Rev. 2017, 347, 23–47. [Google Scholar] [CrossRef]
- Nowak, M.; Kotyczka-Morańska, M.; Szperlich, P.; Jesionek, M.; Kępińska, M.; Stróż, D.; Kusz, J.; Szala, J.; Moskal, G.; Rzychoń, T.; et al. Using of sonochemically prepared components for vapor phase growing of SbI3·3S8. Ultrason. Sonochemistry 2010, 17, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Fernando, W. Single crystal Raman spectra of SbI3·3S8; CHI3·3S8 and AsI3·3S8. J. Inorg. Nucl. Chem. 1981, 43, 1141–1145. [Google Scholar] [CrossRef]
- Bjorvatten, T.; Hassel, O.; Lindheim, A. Crystal structure of addition compound SBI3/3S8. Acta Chem. Scand. 1963, 17, 689–702. [Google Scholar] [CrossRef]
- Guo, S.-P.; Sun, Z.-D.; Chi, Y.; Xue, H.-G. Adduct-type IR nonlinear-optical crystal SbI3·(S8)3 with a large second-harmonic generation and a high laser-induced damage threshold. Inorg. Chem. 2018, 57, 11282–11288. [Google Scholar] [CrossRef]
- Feng, X.; Sun, Z.; Pei, K.; Han, W.; Wang, F.; Luo, P.; Su, J.; Zuo, N.; Liu, G.; Li, H. 2D inorganic bimolecular crystals with strong in-plane anisotropy for second-order nonlinear optics. Adv. Mater. 2020, 32, 2003146. [Google Scholar] [CrossRef]
- Kotyczka-Morańska, M.; Nowak, M.; Kępińska, M.; Szperlich, P.; Szala, J. Własności optyczne monokryształów SbI3·3S8 otrzymanych z fazy gazowej. Inż. Mater. 2008, 29, 127–130. [Google Scholar]
- Lim, M.; Son, Y.; Khim, J. Frequency effects on the sonochemical degradation of chlorinated compounds. Ultrason. Sonochem. 2011, 18, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Warren, B.; Burwell, J. The structure of rhombic sulphur. J. Chem. Phys. 1935, 3, 6–8. [Google Scholar] [CrossRef]
- Gedanken, A. Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem. 2004, 11, 47–55. [Google Scholar] [CrossRef] [PubMed]
SL. No. | Crystal Planes | Observed 2Ɵ from XRD Experiment (Degree) | Standard 2Ɵ from JCPDS (PDF No. 71-2024) (Degree) | ||
---|---|---|---|---|---|
h | k | l | |||
1. | 1 | 1 | 0 | 7.282 | 7.118 |
2. | 3 | 0 | 0 | 12.350 | 12.345 |
3. | 2 | 2 | 0 | 14.344 | 14.264 |
4. | 1 | 4 | 0 | 18.909 | 18.907 |
5. | 0 | 2 | 1 | 21.890 | 21.690 |
6. | 0 | 6 | 0 | 24.782 | 24.836 |
7. | 5 | 2 | 0 | 25.779 | 25.868 |
8. | 0 | 5 | 1 | 28.962 | 28.962 |
9. | 2 | 4 | 1 | 29.947 | 29.826 |
10. | 5 | 1 | 1 | 30.644 | 30.702 |
11. | 1 | 7 | 0 | 31.340 | 31.399 |
12. | 4 | 3 | 1 | 32.650 | 32.390 |
13. | 1 | 6 | 1 | 34.027 | 34.004 |
14. | 5 | 5 | 0 | 36.121 | 36.166 |
15. | 9 | 0 | 0 | 37.610 | 37.637 |
16. | 2 | 8 | 0 | 38.307 | 38.354 |
17. | 4 | 7 | 0 | 40.289 | 40.441 |
18. | 6 | 6 | 0 | 43.671 | 43.761 |
19. | 9 | 3 | 0 | 45.466 | 45.620 |
20. | 1 | 5 | 2 | 47.435 | 47.292 |
21. | 6 | 1 | 2 | 49.586 | 49.652 |
22. | 5 | 3 | 2 | 50.835 | 50.801 |
23. | 7 | 7 | 0 | 51.523 | 51.513 |
24. | 11 | 1 | 1 | 53.321 | 53.289 |
25. | 6 | 8 | 1 | 55.808 | 55.997 |
26. | 11 | 2 | 1 | 57.698 | 57.580 |
27. | 5 | 6 | 2 | 58.786 | 58.392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, T.K.; Jesionek, M.; Kępińska, M.; Nowak, M.; Kotyczka-Morańska, M.; Zubko, M.; Młyńczak, J.; Kopczyński, K. SbI3·3S8: A Novel Promising Inorganic Adducts Crystal for Second Harmonic Generation. Materials 2023, 16, 1105. https://doi.org/10.3390/ma16031105
Das TK, Jesionek M, Kępińska M, Nowak M, Kotyczka-Morańska M, Zubko M, Młyńczak J, Kopczyński K. SbI3·3S8: A Novel Promising Inorganic Adducts Crystal for Second Harmonic Generation. Materials. 2023; 16(3):1105. https://doi.org/10.3390/ma16031105
Chicago/Turabian StyleDas, Tushar Kanti, Marcin Jesionek, Mirosława Kępińska, Marian Nowak, Michalina Kotyczka-Morańska, Maciej Zubko, Jarosław Młyńczak, and Krzysztof Kopczyński. 2023. "SbI3·3S8: A Novel Promising Inorganic Adducts Crystal for Second Harmonic Generation" Materials 16, no. 3: 1105. https://doi.org/10.3390/ma16031105
APA StyleDas, T. K., Jesionek, M., Kępińska, M., Nowak, M., Kotyczka-Morańska, M., Zubko, M., Młyńczak, J., & Kopczyński, K. (2023). SbI3·3S8: A Novel Promising Inorganic Adducts Crystal for Second Harmonic Generation. Materials, 16(3), 1105. https://doi.org/10.3390/ma16031105