Study on Microstructure and Mechanical Properties of TC4/AZ31 Magnesium Matrix Nanocomposites
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Fabrication of the Composites
2.2. Microstructure Characterization
2.3. Mechanical Property Testing
3. Results and Discussion
3.1. X-ray Diffraction
3.2. Microstructure Characterization
3.3. Tensile Test
3.4. Fracture Surface Analysis
4. Conclusions
- (1)
- Ultrasonic-assisted stirring dispersion can disperse TC4 nanoparticles uniformly on the surfaces of AZ31 particles. After SPS followed by hot extrusion, TC4 nanoparticles remain uniformly dispersed in the composite material, and are well combined with the Mg matrix; this confirms that the process is feasible.
- (2)
- Nano-TC4 can refine the microstructure of magnesium alloy. The average grain size refinement of the composite is most obvious when the content of TC4 is 1 wt.%, and the average grain size is reduced from 7.02 µm to 2.23 µm.
- (3)
- With the increase in nano-TC4 content, the UTS and FS of the TC4/AZ31 composites increased first and then decreased. When the content of TC4 is 1 wt.%, the mechanical properties of the composite are the best, and the YS, UTS, and FS are 195 MPa, 306 MPa, and 9.2%, respectively, which are 20.4%, 11.7%, and 21.1% higher than those of the magnesium matrix, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, N.; Belokar, R.M. Tribological behavior of aluminum and magnesium-based hybrid metal matrix composites: A state-of-art review. Mater. Today Proc. 2021, 44, 460–466. [Google Scholar] [CrossRef]
- Song, J.F.; She, J.; Chen, D.L.; Pan, F.S. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloy. 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Ma, G.; Xiao, H.; Ye, J.; He, Y. Research status and development of magnesium matrix composites. Mater. Sci. Technol. 2020, 36, 645–653. [Google Scholar] [CrossRef]
- Chen, L.; Yao, Y. Processing, microstructures, and mechanical properties of magnesium matrix composites: A review. Acta Metall. Sin.-Engl. 2014, 27, 762–774. [Google Scholar] [CrossRef]
- Salasel, A.R.; Abbasi, A.; Barri, N.; Mirzadeh, H.; Emamy, M.; Malekan, M. Effect of Si and Ni on microstructure and mechanical properties of in-situ magnesium-based composites in the as-cast and extruded conditions. Mater. Chem. Phys. 2019, 232, 305–310. [Google Scholar] [CrossRef]
- Wu, B.; Li, J.B.; Ye, J.L.; Tan, J.; Liu, L.Z.; Song, J.F.; Chen, X.H.; Pan, F.S. Work hardening behavior of Ti particle reinforced AZ91 composite prepared by spark plasma sintering. Vacuum 2021, 183, 109833. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, C.L.; Li, H.X.; Sun, Y.X.; Yan, Y.Z.; Zhao, T.H.; Li, X.L.; Liu, F. Achieving high strength-ductility combination and negligible yield asymmetry in extruded AlN/AZ91 composite rods. Mater. Sci. Eng. A 2020, 773, 138842. [Google Scholar] [CrossRef]
- Xiao, P.; Gao, Y.M.; Xu, F.X.; Yang, S.S.; Li, Y.F.; Li, B.; Zhao, S.Y. Hot deformation behavior of in-situ nanosized TiB2 particulate reinforced AZ91 Mg matrix composite. J. Alloys Compd. 2019, 798, 1–11. [Google Scholar] [CrossRef]
- Nie, K. Effect of Multi-Directional Forging on Microstructure and Mechanical Properties of SiCp/AZ91 Magnesium Matrix Composites. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2012. [Google Scholar]
- Goh, C.S.; Wei, J.; Lee, L.C.; Gupta, M. Properties and deformation behavior of Mg–Y2O3 nanocomposites. Acta Mater. 2007, 55, 5115–5121. [Google Scholar] [CrossRef]
- Hu, M.L.; Wei, S.H.; Shi, Q.; Ji, Z.S.; Xu, H.Y.; Wang, Y. Dynamic recrystallization behavior and mechanical properties of bimodal scale Al2O3 reinforced AZ31 composites by solid state synthesis. J. Magnes. Alloy. 2020, 8, 841–848. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, N.Z.; Wang, L.Y.; Hu, X.S.; Wu, K.; Wang, Y.Q.; Huang, Y.D. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treat. Mater. Des. 2014, 57, 638–645. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Zhang, Q.; Hu, H. Tensile behaviour and microstructure of magnesium AM60-based hybrid composite containing Al2O3 fibres and particles. Mater. Sci. Eng. A 2014, 607, 269–276. [Google Scholar] [CrossRef]
- Paulo Hang Jutanaiman, S.; Zulfia Syahrial, A. Characteristics of magnesium/B4C reinforced composite fabricated by stir casting method. Mater. Sci. Eng. 2020, 924, 012020. [Google Scholar] [CrossRef]
- Shen, M.J.; Wang, X.J.; Zhang, M.F.; Hu, X.S.; Zheng, M.Y.; Wu, K. Fabrication of bimodal size SiCp reinforced AZ31B magnesium matrix composites. Mater. Sci. Eng. A 2014, 601, 58–64. [Google Scholar] [CrossRef]
- Rahmany-Gorji, R.; Alizadeh, A.; Jafari, H. Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites. Mater. Sci. Eng. A 2016, 674, 413–418. [Google Scholar] [CrossRef]
- Kitazono, K.; Komatsu, S.; Kataoka, Y. Mechanical properties of titanium particles dispersed magnesium matrix composite produced through accumulative diffusion bonding process. Mater. Trans. 2011, 52, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Dinaharan, I.; Zhang, S.; Chen, G.Q.; Shi, Q.Y. Assessment of Ti-6Al-4V particles as a reinforcement for AZ31 magnesium alloy-based composites to boost ductility incorporated through friction stir processing. J. Magnes. Alloy. 2021, 10, 979–992. [Google Scholar] [CrossRef]
- Dinaharan, I.; Zhang, S.; Chen, G.Q.; Shi, Q.Y. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing. Mater. Sci. Eng. A 2020, 772, 138793. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, X.M.; Hu, X.S.; Wu, K. Effects of hot extrusion on microstructure and mechanical properties of Mg matrix composite reinforced with deformable TC4 particles. J. Magnes. Alloy. 2020, 8, 421–430. [Google Scholar] [CrossRef]
- Wang, X.J.; Wu, K.; Zhang, H.F.; Huang, W.X.; Chang, H.; Gan, W.M.; Zheng, M.Y.; Peng, D.L. Effect of hot extrusion on the microstructure of a particulate reinforced magnesium matrix composite. Mater. Sci. Eng. A 2007, 465, 78–84. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, H.P.; Sun, Y.; Ren, L.L.; Wan, Z.P.; Hu, L.X. Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy. Adv. Powder Technol. 2018, 29, 3241–3249. [Google Scholar] [CrossRef]
- Yamanoğlu, R.; Karakulak, E.; Zeren, A.; Zeren, M. Effect of heat treatment on the tribological properties of AlâCuâMg/nanoSiC composites. Mater. Des. 2013, 49, 820–825. [Google Scholar] [CrossRef]
- Wang, Z.D.; Nie, K.B.; Deng, K.K.; Han, J.G. Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg–2Zn–0.8Sr–0.2Ca matrix composite reinforced by TiC nano-particles. Int. J. Min. Met. Mater. 2022, 29, 1981–1990. [Google Scholar] [CrossRef]
- Xu, Z.N.; Xu, L.J.; Xiong, N.; Yao, Y.; Li, X.Q.; Wei, S.Z. Dynamic recrystallization behavior of a Mo-2.0%ZrO2 alloy during hot deformation. Int. J. Refract. Met. Hard 2022, 109, 105983. [Google Scholar] [CrossRef]
- El-Tahawy, M.; Máthis, K.; Garcés, G.; Matsumoto, T.; Yamasaki, M.; Kawamura, Y.; Gubicza, J. Type and density of dislocations in a plastically deformed long-period stacking ordered magnesium alloy. J. Alloys Compd. 2018, 771, 629–635. [Google Scholar] [CrossRef]
- Xiang, S.L.; Gupta, M.; Wang, X.J.; Wang, L.D.; Hu, X.S.; Wu, K. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets. Compos. Part A 2017, 100, 183–193. [Google Scholar] [CrossRef]
- Yan, Z.F.; Wang, D.H.; He, X.L.; Wang, W.X.; Zhang, H.X.; Dong, P.; Li, C.H.; Li, Y.L.; Zhou, J.; Liu, Z.; et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesiumalloy based on steady ratcheting effect. Mater. Sci. Eng. A 2018, 723, 212–220. [Google Scholar] [CrossRef]
- Ashrafi, H.; Shamanian, M.; Emadi, R.; Sanayei, M.; Farhadi, F.; Szpunar, J.A. Characterization of Microstructure and Microtexture in a Cold-Rolled and Intercritically Annealed Dual-Phase Steel. J. Mater. Eng. Perform. 2021, 30, 7306–7313. [Google Scholar] [CrossRef]
- Ye, J.L.; Li, J.B.; Luo, H.; Tan, J.; Chen, X.H.; Feng, B.; Zheng, K.H.; Pan, F.S. Effect of micron-Ti particles on microstructure and mechanical properties of Mg–3Al–1Zn based composites. Mater. Sci. Eng. A 2022, 833, 142526. [Google Scholar] [CrossRef]
- Luo, H.; Li, J.B.; Ye, J.L.; Lu, Y.F.; Tan, J.; Song, J.F.; Chen, X.H.; Zheng, K.H.; Pan, F.S. Influence of Ti-6Al-4V particles on the interfacial microstructure and strength-ductility synergetic mechanism of AZ91 magnesium alloy. Mater. Charact. 2022, 191, 112154. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Ishak, M.R.; Taha, M.M.; Mustapha, F.; Leman, Z. Investigation of ABS–oil palm fiber (Elaeis guineensis) composites filament as feedstock for fused deposition modeling. Rapid Prototyp. J. 2022, 28. [Google Scholar] [CrossRef]
- Habibnejad-Korayem, M.; Mahmudi, R.; Poole, W.J. Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater. Sci. Eng. A 2009, 519, 198–203. [Google Scholar] [CrossRef]
- Nie, K.B.; Wang, X.J.; Wu, K.; Hu, X.S.; Zheng, M.Y. Development of SiCp/ AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Mater. Sci. Eng. A 2012, 540, 123–129. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, X.J.; Yu, S.L.; Zhang, J.; Lu, X.Z.; Shu, X.; Su, Z.J. Effects of heat treatment on mechanical properties of an extruded Mg-4.3Gd-3.2Y-1.2Zn-0.5Zr alloy and establishment of its Hall–Petch relation. J. Magnes. Alloy. 2022, 10, 501–512. [Google Scholar] [CrossRef]
- Prasanna, S.B.; Diptikanta, D.; Kumar, C.A. Strengthening mechanisms and modelling of mechanical properties of submicron-TiB2 particulate reinforced Al 7075 metal matrix composites. Mater. Sci. Eng. A 2021, 825, 141873. [Google Scholar]
- Zhang, Z.; Chen, D.L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 2006, 54, 1321–1326. [Google Scholar] [CrossRef]
- Nguyen, Q.; Gupta, M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates. Compos. Sci. Technol. 2008, 68, 2185–2192. [Google Scholar] [CrossRef]
- Aikin, R.J.; Christodoulou, L. The role of equiaxed particles on the yield stress of composites. Scr. Metall. Mater. 1991, 25, 9–14. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, D.L. A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs. Scr. Mater. 2004, 51, 863–867. [Google Scholar] [CrossRef]
- Luster, J.W.; Thumann, M.; Baumann, R. Mechanical properties of aluminum alloy 6061–Al2O3 composites. Mater. Sci. Technol.-Lond. 1993, 9, 853–862. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Stanford, N.; Davies, C.H.J.; Nie, J.F.; Birbilis, N. Magnesium extrusion alloys: A review of developments and prospects. Int. Mater. Rev. 2019, 64, 27–62. [Google Scholar] [CrossRef]
- P’erez, P.; Garc´es, G.; Adeva, P. Mechanical properties of a Mg–10 (vol.%) Ti composite. Compos. Sci. Technol. 2004, 64, 145–151. [Google Scholar] [CrossRef]
Al | Zn | Mn | Fe | Si | Ni | Mg |
---|---|---|---|---|---|---|
3.0035 | 0.6956 | 0.3035 | 0.0029 | 0.0026 | 0.0015 | Balance |
Materials | YS (MPa) | UTS (MPa) | FS (%) | Reference |
---|---|---|---|---|
AZ31 | 162 ± 3.1 | 274 ± 4.9 | 7.6 ± 0.4 | This work |
0.5 wt.%TC4/AZ31 | 184 ± 4.0 | 289 ± 5.7 | 8.6 ± 0.7 | This work |
1 wt.%TC4/AZ31 | 195 ± 2.2 | 306 ± 4.2 | 9.2 ± 0.6 | This work |
1.5 wt.%TC4/AZ31 | 202 ± 5.6 | 301 ± 7.1 | 7.0 ± 1.3 | This work |
3 wt.%Ti/AZ31 | 244 ± 1.9 | 287 ± 2.8 | 6.1 ± 0.2 | [30] |
6 wt.%Ti/AZ31 | 255 ± 2.7 | 304 ± 3.7 | 6.9 ± 0.3 | [30] |
9 wt.%Ti/AZ31 | 264 ± 1.6 | 294 ± 3.4 | 8.0 ± 0.6 | [30] |
2 wt.%Al2O3/AZ31 | 165 | 250 | 4.5 | [33] |
0.5 vol.%SiC/AZ91 | 89 | 203 | 7.5 | [34] |
1 vol.%SiC/AZ91 | 97 | 222 | 8.1 | [34] |
2 vol.%SiC/AZ91 | 106 | 126 | 0.8 | [34] |
K (MPa·m1/2) | β | Gm (MPa) | B (nm) | ΔT (K) | ΔC (K−1) | dp (nm) | σm (MPa) |
---|---|---|---|---|---|---|---|
0.13 | 1.25 | 1.66 × 104 | 0.321 | 370 | 17.1 × 10−6 | 60 | 162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yao, Y.; Han, S.; Feng, X.; Luo, T.; Zheng, K. Study on Microstructure and Mechanical Properties of TC4/AZ31 Magnesium Matrix Nanocomposites. Materials 2023, 16, 1139. https://doi.org/10.3390/ma16031139
Chen Y, Yao Y, Han S, Feng X, Luo T, Zheng K. Study on Microstructure and Mechanical Properties of TC4/AZ31 Magnesium Matrix Nanocomposites. Materials. 2023; 16(3):1139. https://doi.org/10.3390/ma16031139
Chicago/Turabian StyleChen, Yong, Yuan Yao, Shengli Han, Xiaowei Feng, Tiegang Luo, and Kaihong Zheng. 2023. "Study on Microstructure and Mechanical Properties of TC4/AZ31 Magnesium Matrix Nanocomposites" Materials 16, no. 3: 1139. https://doi.org/10.3390/ma16031139
APA StyleChen, Y., Yao, Y., Han, S., Feng, X., Luo, T., & Zheng, K. (2023). Study on Microstructure and Mechanical Properties of TC4/AZ31 Magnesium Matrix Nanocomposites. Materials, 16(3), 1139. https://doi.org/10.3390/ma16031139