Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, L.; Wang, Y.; Kuzmin, A.; Hua, Y.; Zhao, J.; Xu, S.; Prasad, P.N. Next generation lanthanide doped nanoscintillators and photon converters. eLight 2022, 2, 17. [Google Scholar] [CrossRef]
- Pan, S.; Peng, H. Making Passive Daytime Radiative Cooling Metafabrics on a Large Scale. Adv. Fiber Mater. 2021, 4, 3–4. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, R.; Zeng, X.; Luo, Y.; Luo, Z. An Easy-to-Prepare Flexible Dual-Mode Fiber Membrane for Daytime Outdoor Thermal Management. Adv. Fiber Mater. 2022, 4, 1058–1068. [Google Scholar] [CrossRef]
- Wen, X.; Xiong, J.; Lei, S.; Wang, L.; Qin, X. Diameter Refinement of Electrospun Nanofibers: From Mechanism, Strategies to Applications. Adv. Fiber Mater. 2022, 4, 145–161. [Google Scholar] [CrossRef]
- Chen, X.F.; Song, J.B.; Chen, X.Y.; Yang, H.H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073–3101. [Google Scholar] [CrossRef]
- Overdick, M.; Baumer, C.; Engel, K.J.; Fink, J.; Herrmann, C.; Kruger, H.; Simon, M.; Steadman, R.; Zeitler, G. Status of direct conversion detectors for medical imaging with X-rays. IEEE Trans. Nucl. Sci. 2009, 56, 1800–1809. [Google Scholar] [CrossRef]
- Persson, M.; Bujila, R.; Nowik, P.; Andersson, H.; Kull, L.; Andersson, J.; Bornefalk, H.; Danielsson, M. Upper limits of the photon fluence rate on CT detectors: Case study on a commercial scanner. Med. Phys. 2016, 43, 4398–4411. [Google Scholar] [CrossRef]
- Nikl, M.; Yoshikawa, A. Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection. Adv. Opt. Mater. 2015, 3, 463–481. [Google Scholar]
- Cheng, Y.; Lei, L.; Zhu, W.; Wang, Y.; Guo, H.; Xu, S. Enhancing light yield of Tb3+-doped fluoride nanoscintillator with restricted positive hysteresis for low-dose high-resolution X-ray imaging. Nano Res. 2022. [Google Scholar] [CrossRef]
- Chen, M.; Wang, C.; Hu, W. Organic photoelectric materials for X-ray and gamma ray detection: Mechanism, material preparation and application. J. Mater. Chem. C 2021, 9, 4709–4729. [Google Scholar] [CrossRef]
- Hashem, J.A.; Pryor, M.; Landsberger, S.; Hunter, J.; Janecky, D.R. Automating High-Precision X-Ray and Neutron Imaging Applications with Robotics. IEEE Trans. Autom. Sci. Eng. 2018, 15, 663–674. [Google Scholar] [CrossRef]
- Chen, F.; Ju, M.; Gutsev, G.L.; Kuang, X.; Lu, C.; Yeung, Y. Structure and luminescence properties of a Nd3+ doped Bi4Ge3O12 scintillation crystal: New insights from a comprehensive study. J. Mater. Chem. C 2017, 5, 3079–3087. [Google Scholar] [CrossRef]
- Auffray, E.; Augulis, R.; Borisevich, A.; Gulbinas, V.; Fedorov, A.; Korjik, M.; Lucchini, M.; Mechinsky, V.; Nargelas, S.; Songaila, E.; et al. Luminescence rise time in self-activated PbWO4 and Ce-doped Gd3Al2Ga3O12 scintillation crystals. J. Lumin. 2016, 178, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.C.; Miglio, A.; Mikami, M.; Gonze, X. Ab initio study of luminescence in Ce-doped Lu2SiO5: The role of oxygen vacancies on emission color and thermal quenching behavior. Phys. Rev. Mater. 2018, 2, 125202. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Rooh, G.; Kim, H.; Park, H.; Kim, S. Intrinsically activated TlCaCl3: A new halide scintillator for radiation detection. Radiat. Meas. 2018, 107, 115–118. [Google Scholar] [CrossRef]
- Ren, G.; Chen, X.; Pei, Y.; Li, H.; Xu, H. Dehydration and oxidation in the preparation of Ce-doped LaCl3 scintillation crystals. J. Alloy. Compd. 2009, 467, 120–123. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Watanabe, K.; Fukuda, K.; Kawaguchi, N.; Miyamoto, Y.; Nanto, H. Scintillation and optical stimulated luminescence of Ce-doped CaF2. Radiat. Meas. 2015, 71, 162–165. [Google Scholar] [CrossRef] [Green Version]
- de Mello, A.C.; Andrade, A.B.; Nakamura, G.H.; Baldochi, S.L.; Valerio, M.E. Scintillation mechanism of Tb3+ doped BaY2F8. Opt. Mater. 2010, 32, 1337–1340. [Google Scholar] [CrossRef]
- Kamada, K.; Yanagida, T.; Nikl, M.; Fukabori, A.; Yoshikawa, A.; Aoki, K. Crystal growth and luminescent properties of pr-doped K (Y, Lu)3F10 single crystal for scintillator application. J. Cryst. Growth 2010, 312, 2795–2798. [Google Scholar] [CrossRef]
- Heo, J.H.; Shin, D.H.; Park, J.K.; Kim, D.H.; Lee, S.J.; Im, S.H. High-performance next-generation perovskite nanocrystal scintillator for nandestructive X-ray imaging. Adv. Mater. 2018, 30, 1801743. [Google Scholar] [CrossRef]
- Birowosuto, M.D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C. X-ray Scintillation in Lead Halide Perovskite Crystals. Sci. Rep. 2016, 6, 37254. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lin, H.; Huang, Q.; Huang, F.; Xu, J.; Wang, B.; Lin, Z.; Zhou, J.; Wang, Y. A novel double-perovskite Gd2ZnTiO6:Mn4+ red phosphor for UV-based w-LEDs: Structure and luminescence properties. J. Mater. Chem. C 2016, 4, 2374–2381. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Tian, Y.; Huang, P.; Wang, L.; Shi, Q.F.; Cui, C.E. Effect of Yb3+ concentration on up-conversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route. Chem. Eng. J. 2016, 297, 26–34. [Google Scholar] [CrossRef]
- Achary, S.N.; Patwe, S.J.; Tyagi, A.K. Powder XRD study of Ba4Eu3F17: A new anion rich fluorite related mixed fluoride. Powder Diffr. 2002, 17, 225–229. [Google Scholar] [CrossRef]
- Krieke, G.; Sarakovskis, A.; Springis, M. Ordering of fluorite-type phases in erbium-doped oxyfluoride glass ceramics. J. Eur. Ceram. Soc. 2018, 38, 235–243. [Google Scholar] [CrossRef]
- Li, J.; Hao, Z.; Zhang, X.; Luo, Y.; Zhao, J.; Lü, S.; Cao, J.; Zhang, J. Hydrothermal synthesis and up-conversion luminescence properties of beta-NaGdF4:Yb3+/Tm3+ and beta-NaGdF4:Yb3+/Ho3+ submicron crystals with regular morphologies. J. Colloid Interface Sci. 2013, 392, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Pitale, S.S.; Kumar, V.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Coetsee, E.; Swart, H.C. Cathodoluminescent properties and surface characterization of blush-white LiAl5O8: Tb phosphor. J. Appl. Phys. 2011, 109, 013105. [Google Scholar] [CrossRef]
- Huang, X.; Li, B.; Guo, H. Synthesis, photoluminescence, cathodoluminescence, and thermal properties of novel Tb3+-doped BiOCl green-emitting phosphors. J. Alloy. Compd. 2017, 695, 2773–2780. [Google Scholar] [CrossRef]
- Xia, Z.G.; Liu, R.S. Tunable blue-green color emission and energy transfer of Ca2Al3O6F: Ce3+,Tb3+ phosphors for near-UV white LEDs. J. Phys. Chem. C 2012, 116, 15604–15609. [Google Scholar] [CrossRef]
- Lei, L.; Wang, Y.; Xu, W.; Ye, R.; Hua, Y.; Deng, D.; Chen, L.; Prasad, P.N.; Xu, S. Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles. Nat. Commun. 2022, 13, 5739. [Google Scholar] [CrossRef]
Formula | Pb4Lu3F17: Tb | |||||
---|---|---|---|---|---|---|
Crystal system | rhombohedral | |||||
Density (g/cm3) | 7.144 | |||||
Space-group | R3 (148) | |||||
a (Å) = b (Å) | 10.72442 | |||||
c (Å) | 19.86123 | |||||
α = β (°) | 90 | |||||
γ (°) | 120 | |||||
Rwp (%) | 11.7 | |||||
chi2 | 1.84 | |||||
Atoms | X | Y | Z | B | Occ. | Site |
Pb (1) | 0 | 0 | 0.2586 | 1.658 | 6 | |
Pb (2) | 0.2292 | 0.0369 | 0.0836 | 2.163 | 18 | |
Lu | 0.09 | 0.6127 | 0.0835 | 0.774 | 18 | |
F (1) | 0.036 | 0.767 | 0.0376 | 1.5 | 18 | |
F (2) | 0.426 | 0.291 | 0.1101 | 1.5 | 18 | |
F (3) | 0.475 | 0.082 | 0.321 | 1.5 | 18 | |
F (4) | 0.203 | 0.485 | 0.341 | 1.5 | 18 | |
F (5) | 0.267 | 0.392 | 0.1735 | 1..5 | 18 | |
F (6) | 0 | 0 | 0.145 | 1.5 | 6 | |
F (7) | 0 | 0 | 0 | 1.5 | 3 | |
F (8) | 0.02 | 0.057 | 0.502 | 1.5 | 0.167 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, P.; Ping, Y.; Ma, H.; Lei, L. Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles. Materials 2023, 16, 1147. https://doi.org/10.3390/ma16031147
Qiao P, Ping Y, Ma H, Lei L. Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles. Materials. 2023; 16(3):1147. https://doi.org/10.3390/ma16031147
Chicago/Turabian StyleQiao, Peng, Yiheng Ping, Hongping Ma, and Lei Lei. 2023. "Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles" Materials 16, no. 3: 1147. https://doi.org/10.3390/ma16031147
APA StyleQiao, P., Ping, Y., Ma, H., & Lei, L. (2023). Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles. Materials, 16(3), 1147. https://doi.org/10.3390/ma16031147