Phenolic Compounds Removal from Olive Mill Wastewater Using the Composite of Activated Carbon and Copper-Based Metal-Organic Framework
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Instruments and Characterization
2.3. Preparation of GAC/Cu(BDC) MOF Composite Adsorbent
2.4. Adsorption of OMW
2.5. Adsorption Isotherms
2.6. Kinetic Modeling
2.7. Thermodynamic Study
3. Results and Discussions
3.1. Characterization of the Media
- K: Scherrer’s constant (0.9)
- D: the crystal size
- λ: the wavelength of X-ray (1.5 nm)
- β: the width of the peak in the middle of the height
- θ: the angle between the X-ray and the particle
3.2. Adsorption Evaluation
3.3. Estimation of the Thermodynamic Parameters
3.4. Modeling the Reaction Kinetics
3.5. Adsorption Isotherm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Maaitah, M.I.; Al-Absi, K.M.; Al-Rawashdeh, A. Oil Quality and Quantity of Three Olive Cultivars as Influenced by Harvesting Date in the Middle and Southern Parts of Jordan. Int. J. Agric. Biol. 2009, 11, 266–272. [Google Scholar]
- Aktas, E.S.; Imre, S.; Ersoy, L. Characterization and Lime Treatment of Olive Mill Wastewater. Water Res. 2001, 35, 2336–2340. [Google Scholar] [CrossRef]
- Klisović, D.; Novoselić, A.; Režek Jambrak, A.; Brkić Bubola, K. The utilisation solutions of olive mill by-products in the terms of sustainable olive oil production: A review. Int. J. Food Sci. Technol. 2021, 56, 4851–4860. [Google Scholar] [CrossRef]
- Fiorentino, F.; Gentili, A.; Isidori, M.; Monaco, P.; Nardelli, A.; Parrella, A.; Temussi, F. Environmental effects caused by olive mill wastewaters: Toxicity comparison of low-molecular-weight phenol components. J. Agric. Food. Chem. 2003, 51, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Azzaz, A.A.; Jeguirim, M.; Kinigopoulou, V.; Doulgeris, C.; Goddard, M.L.; Jellali, S.; Matei Ghimbeu, C. Olive mill wastewater: From a pollutant to green fuels, agricultural and water source and bio-fertilizer–Hydrothermal carbonization. Sci. Total Environ. 2020, 733, 139314. [Google Scholar] [CrossRef] [PubMed]
- Bottino, A.; Capannelli, G.; Comite, A.; Jezowska, A.; Pagliero, M.; Costa, C.; Firpo, R. Treatment of olive mill wastewater through integrated pressure-driven membrane processes. Membranes 2020, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- Al-Bsoul, A.; Al-Shannag, M.; Tawalbeh, M.; Al-Taani, A.A.; Lafi, W.K.; Al-Othman, A.; Alsheyab, M. Optimal Conditions for Olive Mill Wastewater Treatment Using Ultrasound and Advanced Oxidation Processes. Sci. Total Environ. 2020, 700, 134576. [Google Scholar] [CrossRef]
- Benamar, A.; Mahjoubi, F.Z.; Barka, N.; Kzaiber, F.; Boutoial, K.; Ali, G.A.M.; Oussama, A. Olive mill wastewater treatment using infiltration percolation in column followed by aerobic biological treatment. SN Appl. Sci. 2020, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Al-Bawab, A.; Alshawawreh, F.; Abu-Dalo, M.A.; Al-Rawashdeh, N.A.; Bozeya, A. Separation of Soluble Phenolic Compounds from Olive Mill Wastewater (OMW) Using Modified Surfactant. Fresenius Environ. Bull. 2017, 26, 1949–1958. [Google Scholar]
- Abu-Dalo, M.; Abdelnabi, J.; Al-Rawashdeh, N.A.F.; Albiss, B.; Al Bawab, A. Coupling coagulation-flocculation to volcanic tuff-magnetite nanoparticles adsorption for olive mill wastewater treatment. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100626. [Google Scholar] [CrossRef]
- Abu-Dalo, M.; Abdelnabi, J.; Al Bawab, A. Preparation of Activated Carbon Derived from Jordanian Olive Cake and Functionalized with Cu/Cu2O/CuO for Adsorption of Phenolic Compounds from Olive Mill Wastewater. Materials 2021, 14, 6636. [Google Scholar] [CrossRef] [PubMed]
- Odeh, F.; Abu-Dalo, M.; Albiss, B.; Ghannam, N.; Khalaf, A.; Amayreh, H.H.; Al Bawab, A. Coupling Magnetite and Goethite Nanoparticles with Sorbent Materials for Olive Mill Wastewater Remediation. Emergent Mater. 2022, 5, 77–88. [Google Scholar] [CrossRef]
- Al Bawab, A.; Ghannam, N.; Abu-Mallouh, S.; Bozeya, A.; Abu-Zurayk, R.A.; Al-Ajlouni, Y.A.; Alshawawreh, F.; Odeh, F.; Abu-Dalo, M.A. Olive mill wastewater treatment in Jordan: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 305, 012002. [Google Scholar] [CrossRef]
- Odeh, F.; Al Bawab, A.; Fayyad, M.; Bozeya, A. Surfactant Enhanced Olive Oil Mill Wastewater Remediation. APCBEE Procedia 2013, 5, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Abu-Dalo, M.A.; Al-Atoom, M.A.; Aljarrah, M.T.; Albiss, B.A. Preparation and Characterization of Polymer Membranes Impregnated with Carbon Nanotubes for Olive Mill Wastewater. Polymers 2022, 14, 457. [Google Scholar] [CrossRef] [PubMed]
- Al Bawab, A.; Abu-Dalo, M.; Khalaf, A.; Abu-Dalo, D. Olive Mill Wastewater (OMW) Treatment Using Photocatalyst Media. Catalysts 2022, 12, 539. [Google Scholar] [CrossRef]
- Vavouraki, A.I.; Dareioti, M.A.; Kornaros, M. Olive Mill Wastewater (OMW) Polyphenols Adsorption onto Polymeric Resins: Part I—Batch Anaerobic Digestion of OMW. Waste Biomass Valorization 2021, 12, 2271–2281. [Google Scholar] [CrossRef]
- Qin, L.; Li, Y.; Liang, F.; Li, L.; Lan, Y.; Li, Z.; Lu, X.; Yang, M.; Ma, D. A Microporous 2D Cobalt-Based MOF with Pyridyl Sites and Open Metal Sites for Selective Adsorption of CO2. Microporous Mesoporous Mater. 2022, 341, 112098. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, J.; Zhang, L.; Cheng, Y.; Lu, C.; Liu, Y.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J. Metal Organic Frameworks as Efficient Adsorbents for Drugs from Wastewater. Mater. Today Commun. 2022, 31, 103514. [Google Scholar] [CrossRef]
- Qin, L.; Liang, F.; Li, Y.; Wu, J.; Guan, S.; Wu, M.; Xie, S.; Luo, M.; Ma, D. A 2D Porous Zinc-Organic Framework Platform for Loading of 5-Fluorouracil. Inorganics 2022, 10, 202. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, F.; Luo, D.; Huang, J.; Ouyang, J.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.; Peng, Y. Recent Advances in Ti-Based MOFs in Biomedical Applications. Dalton Trans. 2022, 51, 14817–14832. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Chen, J.Q.; Hu, M.L.; Sakiyama, H.; Muddassir, M.; Liu, J.Q. Syntheses, Structures and Mechanisms of Interactions with DNA of Two New 20-Core Silver(I) Complexes with Different Ligands. Inorg. Chim. Acta 2023, 546, 121297. [Google Scholar] [CrossRef]
- Redfern, L.R.; Farha, O.K. Mechanical properties of metal-organic frameworks. Chem. Sci. 2019, 10, 10666–10679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abazari, R.; Mahjoub, A.R.; Shariati, J. Synthesis of a nanostructured pillar MOF with high adsorption capacity towards antibiotics pollutants from aqueous solution. J. Hazard. Mater. 2019, 366, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Far, H.S.; Hasanzadeh, M.; Nashtaei, M.S.; Rabbani, M.; Haji, A.; Hadavi Moghadam, B. PPI-Dendrimer-Functionalized Magnetic Metal-Organic Framework (Fe3O4@MOF@PPI) with High Adsorption Capacity for Sustainable Wastewater Treatment. ACS Appl. Mater. Interfaces 2020, 12, 25294–25303. [Google Scholar] [CrossRef]
- Seo, P.W.; Ahmed, I.; Jhung, S.H. Adsorption of indole and quinoline from a model fuel on functionalized MIL-101: Effects of H-bonding and coordination. Phys. Chem. Chem. Phys. 2016, 18, 14787–14794. [Google Scholar] [CrossRef]
- Liu, B.; Yang, F.; Zou, Y.; Peng, Y. Adsorption of phenol and p -nitrophenol from aqueous solutions on metal-organic frameworks: Effect of hydrogen bonding. J. Chem. Eng. Data 2014, 59, 1476–1482. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Casazza, A.A.; Perego, P. Kinetic and isotherm modelling of the adsorption of phenolic compounds from olive mill wastewater onto activated carbon. Food Technol. Biotechnol. 2015, 53, 207–214. [Google Scholar] [CrossRef]
- Senol, A.; Hasdemir, M.; Hasdemir, B.; Kurdaş, İ. Adsorptive removal of biophenols from olive mill wastewaters (OMW) by activated carbon: Mass transfer, equilibrium and kinetic studies. Asia-Pac. J. Chem. Eng. 2017, 12, 128–146. [Google Scholar] [CrossRef]
- Yangui, A.; Abderrabba, M.; Sayari, A. Amine-Modified Mesoporous Silica for Quantitative Adsorption and Release of Hydroxytyrosol and Other Phenolic Compounds from Olive Mill Wastewater. J. Taiwan Inst. Chem. Eng. 2017, 70, 111–118. [Google Scholar] [CrossRef]
- Annab, H.; Fiol, N.; Villaescusa, I.; Essamri, A. A proposal for the sustainable treatment and valorisation of olive mill wastes. J. Environ. Chem. Eng. 2019, 7, 102803. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Simchi, A.; Shahriyari Far, H. Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies. J. Ind. Eng. Chem. 2020, 81, 405–414. [Google Scholar] [CrossRef]
- Abuzalat, O.; Wong, D.; Elsayed, M.A. Nano-Porous Composites of Activated Carbon–Metal Organic Frameworks (Fe-BDC@AC) for Rapid Removal of Cr (VI): Synthesis, Adsorption, Mechanism, and Kinetics Studies. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1924–1934. [Google Scholar] [CrossRef]
- Gil-San-Millan, R.; Delgado, P.; Lopez-Maya, E.; Martin-Romera, J.D.; Barea, E.; Navarro, J.A.R. Layer-by-Layer Integration of Zirconium Metal-Organic Frameworks onto Activated Carbon Spheres and Fabrics with Model Nerve Agent Detoxification Properties. ACS Appl. Mater. Interfaces 2021, 13, 50491–50496. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.A.; Jabbari, V.; Islam, M.T.; Turley, R.S.; Dominguez, N.; Kim, H.; Castro, E.; Hernandez-Viezcas, J.A.; Curry, M.L.; Lopez, J.; et al. Sustainable Synthesis and Remarkable Adsorption Capacity of MOF/Graphene Oxide and MOF/CNT Based Hybrid Nanocomposites for the Removal of Bisphenol A from Water. Sci. Total Environ. 2019, 673, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Peterson, G.L. Review of the folin phenol protein quantitation method of lowry, rosebrough, farr and randall. Anal. Biochem. 1979, 100, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Achak, M.; Hafidi, A.; Mandi, L.; Ouazzani, N. Removal of phenolic compounds from olive mill wastewater by adsorption onto wheat bran. Desalination Water Treat. 2014, 52, 2875–2885. [Google Scholar] [CrossRef]
- Liu, Q.S.; Zheng, T.; Wang, P.; Jiang, J.P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Khoshakhlagh, A.H.; Golbabaei, F.; Beygzadeh, M.; Carrasco-Marín, F.; Shahtaheri, S.J. Toluene Adsorption on Porous Cu–BDC@OAC Composite at Various Operating Conditions: Optimization by Response Surface Methodology. RSC Adv. 2020, 10, 35582–35596. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Karimi, M.; Daasbjerg, K. Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method. Ultrason. Sonochem. 2017, 37, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Patterson, A.L. The scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Lütke, S.F.; Igansi, A.V.; Pegoraro, L.; Dotto, G.L.; Pinto, L.A.A.; Cadaval, T.R.S. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 2019, 7, 103396. [Google Scholar] [CrossRef]
- Huang, K.; Xu, Y.; Wang, L.; Wu, D. Heterogeneous Catalytic Wet Peroxide Oxidation of Simulated Phenol Wastewater by Copper Metal–Organic Frameworks. RSC Adv. 2015, 5, 32795–32803. [Google Scholar] [CrossRef]
- Data, S. Spectroscopic Data; Springer: New York, NY, USA, 1976. [Google Scholar] [CrossRef]
- Trifunschi, S.; Munteanu, M.F.; Agotici, V.; Pintea, S.; Gligor, R. Determination of Flavonoid and Polyphenol Compounds in Viscum Album and Allium Sativum Extracts. Int. Curr. Pharm. J. 2015, 4, 382–385. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, A.; Nazemi, F.; Barjasteh Askari, F.; Davoudi, M. Preparation, Characterization, and Application of Silica Aerogel for Adsorption of Phenol: An In-Depth Isotherm Study. Health Scope. 2018, in press. [CrossRef] [Green Version]
- Adam, O. Removal of Resorcinol from Aqueous Solution by Activated Carbon: Isotherms, Thermodynamics and Kinetics. Am. Chem. Sci. J. 2016, 16, 1–13. [Google Scholar] [CrossRef]
- Hazra, B.; Wood, D.A.; Vishal, V.; Varma, A.K.; Sakha, D.; Singh, A.K. Porosity controls and fractal disposition of organic-rich Permian shales using low-pressure adsorption techniques. Fuel 2018, 15, 837–848. [Google Scholar] [CrossRef]
- ALOthman, Z. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Okolo, B.; Park, C.; Keane, M.A. Interaction of Phenol and Chlorophenols with Activated Carbon and Synthetic Zeolites in Aqueous Media. J. Colloid Interface Sci. 2000, 226, 308–317. [Google Scholar] [CrossRef]
- Abdelmoaty, A.S.; El-Beih, A.A.; Hanna, A.A. Synthesis, Characterization and Antimicrobial Activity of Copper-Metal Organic Framework (Cu-MOF) and Its Modification by Melamine. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1778–1785. [Google Scholar] [CrossRef]
- Dastbaz, A.; Karimi-Sabet, J.; Moosavian, M.A. Intensification of hydrogen adsorption by novel Cu-BDC@rGO composite material synthesized in a microwave-assisted circular micro-channel. Chem. Eng. Process.-Process Intensif. 2019, 135, 245–257. [Google Scholar] [CrossRef]
- Peedikakkal, A.M.P.; Aljundi, I.H. Mixed-Metal Cu-BTC Metal–Organic Frameworks as a Strong Adsorbent for Molecular Hydrogen at Low Temperatures. ACS Omega 2020, 5, 28493–28499. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, A.; Umar, A.; Anderson, W.A.; Kansal, S.K. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced absorption properties. Mater. Res. Bull. 2019, 109, 124–133. [Google Scholar] [CrossRef]
- Paone, E.; Fazzino, F.; Pizzone, D.M.; Scurria, A.; Pagliaro, M.; Ciriminna, R.; Calabrò, P.S. Towards the anchovy biorefinery: Biogas production from anchovy processing waste after fish oil extraction with biobased limonene. Sustainability 2021, 13, 2428. [Google Scholar] [CrossRef]
- Ahmadi, S.; Igwegbe, C.A. Adsorptive removal of phenol and aniline by modified bentonite: Adsorption isotherm and kinetics study. Appl. Water Sci. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Pan, J.; Chen, Y.; Cheng, R.; Xu, X. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J. Hazard. Mater. 2009, 161, 231–240. [Google Scholar] [CrossRef]
- Stasinakis, A.S.; Elia, I.; Petalas, A.V.; Halvadakis, C.P. Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace. J. Hazard. Mater. 2008, 160, 408–413. [Google Scholar] [CrossRef]
- Al-Malah, K.; Azzam, M.O.J.; Abu-Lail, N.I. Olive mills effluent (OME) wastewater post-treatment using activated clay. Sep. Purif. Technol. 2000, 20, 225–234. [Google Scholar] [CrossRef]
- Baransi, K.; Dubowski, Y.; Sabbah, I. Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater. Water Res. 2012, 46, 789–798. [Google Scholar] [CrossRef]
- Papaoikonomou, L.; Labanaris, K.; Kaderides, K.; Goula, A.M. Adsorption–desorption of phenolic compounds from olive mill wastewater using a novel low-cost biosorbent. Environ. Sci. Pollut. Res. 2021, 28, 24230–24244. [Google Scholar] [CrossRef]
- Azzam, M.O.J.; Al-Malah, K.I.; Abu-Lail, N.I. Dynamic Post-treatment Response of Olive Mill Effluent Wastewater Using Activated Carbon. J. Environ. Sci. Health Part A 2004, 39, 269–280. [Google Scholar] [CrossRef]
- Azzam, M.-O.J.; Al-Malah, K.; Al-Gazzawi, Z.; Al-Omari, S.A. Dynamic Treatment Response of Olive Mills Wastewater Using Series of Adsorption Steps. CLEAN-Soil Air Water 2010, 38, 822–830. [Google Scholar] [CrossRef]
- Dehmani, Y.; Ed-Dra, A.; Zennouhi, O.; Bouymajane, A.; Rhazi Filali, F.; Nassiri, L.; Abouarnadasse, S. Chemical characterization and adsorption of oil mill wastewater on Moroccan clay in order to be used in the agricultural field. Heliyon 2020, 6, e03164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabbari, M.Z. Solvent dependence of protonation equilibria for gallic acid in water and different acetonitrile-water cosolvent systems. J. Mol. Liq. 2015, 208, 5–10. [Google Scholar] [CrossRef]
- Yousef, R.I.; El-Eswed, B. The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite. Colloids Surf. A Physicochem. Eng. Asp. 2009, 334, 92–99. [Google Scholar] [CrossRef]
- Zarrok, H.; Zarrouk, A.; Salghi, R.; Assouag, M.; Hammouti, B.; Oudda, H.; Boukhris, S.; Al Deyab, S.S.; Warad, I. Inhibitive properties and thermodynamic characterization of quinoxaline derivative on carbon steel corrosion in acidic medium. Der Pharm. Lett. 2013, 5, 43–53. [Google Scholar]
- Rincón-Silva, N.G.; Moreno-Piraján, J.C.; Giraldo, L. Equilibrium, kinetics and thermodynamics study of phenols adsorption onto activated carbon obtained from lignocellulosic material (Eucalyptus Globulus labill seed). Adsorption 2016, 22, 33–48. [Google Scholar] [CrossRef]
- Laskar, N.; Kumar, U. Adsorption of Crystal Violet from Wastewater by Modified Bambusa Tulda. KSCE J. Civ. Eng. 2018, 22, 2755–2763. [Google Scholar] [CrossRef]
- Bolong, J.; Shunjie, S.; Hailin, J.; Xin, F.; Haofen, S. Research progress in phenol adsorption mechanism over metal-organic framework from wastewater. Chem. Ind. Eng. Prog. 2021, 40, 4525–4539. [Google Scholar] [CrossRef]
Sample Name | CHN Elemental Analyses | XRF | ||||
---|---|---|---|---|---|---|
N% | C% | H% | Cu% | Al% | Si% | |
GAC/Cu(BDC) MOF composite | 0.55 | 63.32 | 1.46 | 69.9 | 9.23 | 9.03 |
Parent GAC | 81.37 | 1.37 | 20.1 | 20.7 |
Adsorbent | Initial Total Phenolic Compounds Concentration | Removal% | Contact Time | Reference |
---|---|---|---|---|
GAC/Cu(BDC) MOF composite | 440 mg/L | 91% | 4 h | Current research |
Activated carbon (purchased from Strem Chemicals (USA)) | 10.85 g/L | 87% | - | [31] |
TRI-SBA-15 | 75% | |||
TRI-P-10 | 67% | |||
Olive pomace | 50 mg/L | up to 40% | 24 h | [59] |
Activated carbon functionalized with Cu/Cu2O/CuO | 124 mg/L | 85% | 24 h | [11] |
Activated Clay | 1190 mg/L | 81% | 24 h | [60] |
Wood char-based powdered activated carbon, PAC, (SigmaeAldrich) | 900 mg/L | 87% | 24 h | [61] |
Pomegranate Seed | 162.5 mg/L | Up to 92.8% | 10 min | [62] |
Activted Volcanic Tuff/0.5% wt/wt magnetite NPs | 124 mg/L | 73% | 48 h | [10] |
Activated carbon | 1190 mg/L | 94% | less than 4 h | [63] |
Environmentally compatible activated carbon of different particle sizes (Sigma–Aldrich) | 4821.5 mg/L | 38–40% | 2 h | [30] |
Powdered carbon normally has median particle diameters between 10 and 50 mm | 450 mg/L | 96.6% | 4 h | [64] |
Clay | 4.75 g/L | 57.4% | 36 h | [65] |
TPC (mg/L) | Temperature (K) | K | ΔG (KJ/mol) | ΔH° (KJ/mol) | ΔS° (KJ/mol) |
---|---|---|---|---|---|
440 | 288 298 308 | 4.3 4.8 5.9 | −4.54 −5.74 −6.08 | 25.7 | 0.105 |
Temperature (K) | Freundlich Isotherm | Langmuir Isotherm | |||||
---|---|---|---|---|---|---|---|
298 | KF | n | R2 | Qm | B | R2 | RL |
4.1 | 2.5 | 0.996 | 8.7 | 2.7 | 0.941 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Dalo, M.A.; Al-Rawashdeh, N.A.F.; Almurabi, M.; Abdelnabi, J.; Al Bawab, A. Phenolic Compounds Removal from Olive Mill Wastewater Using the Composite of Activated Carbon and Copper-Based Metal-Organic Framework. Materials 2023, 16, 1159. https://doi.org/10.3390/ma16031159
Abu-Dalo MA, Al-Rawashdeh NAF, Almurabi M, Abdelnabi J, Al Bawab A. Phenolic Compounds Removal from Olive Mill Wastewater Using the Composite of Activated Carbon and Copper-Based Metal-Organic Framework. Materials. 2023; 16(3):1159. https://doi.org/10.3390/ma16031159
Chicago/Turabian StyleAbu-Dalo, Muna A., Nathir A. F. Al-Rawashdeh, Moath Almurabi, Jehad Abdelnabi, and Abeer Al Bawab. 2023. "Phenolic Compounds Removal from Olive Mill Wastewater Using the Composite of Activated Carbon and Copper-Based Metal-Organic Framework" Materials 16, no. 3: 1159. https://doi.org/10.3390/ma16031159
APA StyleAbu-Dalo, M. A., Al-Rawashdeh, N. A. F., Almurabi, M., Abdelnabi, J., & Al Bawab, A. (2023). Phenolic Compounds Removal from Olive Mill Wastewater Using the Composite of Activated Carbon and Copper-Based Metal-Organic Framework. Materials, 16(3), 1159. https://doi.org/10.3390/ma16031159