Reinforcement Corrosion Testing in Concrete and Fiber Reinforced Concrete Specimens Exposed to Aggressive External Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Research Methods
2.2.1. Galvanostatic Pulse Method
2.2.2. Acoustic Emission Method
2.2.3. Compressive Strength Tests
3. Research Results and Analysis
3.1. Analysis of Results Obtained from Tests Using the Galvanostatic Pulse Method
3.2. Analysis of Test Results Using the AE Method
4. Discussion
5. Conclusions
- The corrosion activity in the specimens with 0.5% fibers was the lowest, and the dispersion of the results was the smallest. The highest corrosion activity was shown by bars in the concrete specimen without fibers. The largest scatter of results was observed in the specimen with the addition of 0.25% of fibers. This indicates that the addition of steel micro-reinforcement fibers to concrete affects the effectiveness of the cover as a layer protecting the reinforcement against corrosion caused by the action of chloride ions and frost. However, the percentage of fiber content in the concrete mixture is of significant importance.
- The content of steel fibers in the concrete mixture in the amount of 0.25%, defined as the minimum anti-shrinkage micro-reinforcement in concrete, is insufficient to obtain a homogeneous and tight concrete cover protecting the reinforcement against corrosion.
- The use of steel fibers as micro-reinforcement does not increase the corrosion risk of the main reinforcement in concrete.
- Randomly dispersed fine steel fibers covered with concrete do not constitute corrosion centers.
- Corrosion caused by chloride ions is pitting corrosion, which means that in concrete elements, there may be point corrosion centers with high corrosion activity of the reinforcement.
- Heating and freezing cycles in a 3% NaCl water solution affect the destruction of concrete—the wave velocity and amplitude decreased in this medium.
- There is a strong linear correlation between the AE wave velocity induced by the calibration pulse from the PK6I acoustic sensor and the values of the corrosion current density recorded in the main reinforcement bars.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertolini, L.; Elsener, B.; Pedeferri, P.; Polder, R. Corrosion of Steel in Concrete, 2nd ed.; Wiley VCH: Weinheim, Germany, 2004. [Google Scholar]
- Kurdowski, W. Cement and Concrete Chemistry. Industrial Chemistry and Chemical Engineering; Springer: Kraków, Poland, 2014. [Google Scholar]
- Jaśniok, M.; Jaśniok, T. Measurements on corrosion rate of reinforcing steel under various environmental conditions, using an insulator to delimit the polarized area, 9th International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures. Procedia Eng. 2017, 193, 4310438. [Google Scholar] [CrossRef]
- Melchers, R. Long-Term Durability of Marine Reinforced Concrete Structures. Mar. Sci. Eng. 2020, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Jiang, Z.; Zhao, Y.; Zhou, H.; Wang, X.; Zhou, H.; Xing, F.; Li, S.; Zhu, J.; Liu, W. Chloride distribution and steel corrosion in a concrete bridge after a long-term exposure to natural marine environment. Materials 2020, 13, 3900. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, C.; Li, Q.; Wu, L. Chloride ion concentration distribution characteristics within concrete covering-layer considering the reinforcement bar presence. Ocean Eng. 2019, 173, 608–616. [Google Scholar] [CrossRef]
- Baltazar-Zamora, M.A.; Márquez-Montero, S.; Landa-Ruiz, L.; Croche, R.; López-Yza, O. Effect of the Type of Curing on the Corrosion Behavior of Concrete Exposed to Urban and Marine Environment. Eur. J. Eng. Res. Sci. 2020, 5, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.K.; Bhadauria, S.S.; Akhtar, S. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures. Sci. World J. 2014, 2014, 957904. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Li, Y.; Li, J.; Lim, K.S.; Nazal, N.A.M.; Ahmad, H. A Recent Progress of Steel Bar Corrosion Diagnostic Techniques in RC Structures. Sensors 2018, 19, 34. [Google Scholar] [CrossRef] [Green Version]
- Kuziak, J.; Woyciechowski, P.; Kobyłka, R.; Wcisło, A. The content of chlorides in blast-furnace slag cement as a factor affecting the diffusion of chloride ions in concrete. MATEC Web Conf. 2018, 163, 05007. [Google Scholar] [CrossRef] [Green Version]
- Ariza, H.; Bosch, J.; Baltazar Zamora, M.; Croche, R.; Santiago-Hurtado, G.; Landa-Ruiz, L.; Mendoza-Rangel, J.M.; Bastidas, J.M.; Almeraya-Calderon, F.; Bastidas, D.M. Corrosion Behavior of AISI 304 Stainless Steel Reinforcements in SCBA-SF Ternary Ecological Concrete Exposed to MgSO4. Materials 2020, 13, 2412. [Google Scholar] [CrossRef]
- Brodnan, M.; Koteš, P. Assessment of the current state of the concrete structure of the tribune. Structure 2020, 12, 72–76. [Google Scholar] [CrossRef]
- Hajkova, K.; Smilauer, V.; Jendele, L.; Červenka, J. Prediction of reinforcement corrosion due to chloride ingress and its effects on serviceability. Eng. Struct. 2018, 174, 768–777. [Google Scholar] [CrossRef]
- Szweda, Z.; Gołaszewski, J.; Ghosh, P.; Lehner, P.; Konečný, P. Comparison of Standardized Methods for Determining the Diffusion Coefficient of Chloride in Concrete with Thermodynamic Model of Migration. Materials 2023, 16, 637. [Google Scholar] [CrossRef] [PubMed]
- Szweda, Z. Evaluating the Impact of Concrete Design on the Effectiveness of the Electrochemical Chloride Extraction Process. Materials 2023, 16, 666. [Google Scholar] [CrossRef] [PubMed]
- Raczkiewicz, W.; Koteš, P.; Konečný, P. Influence of the Type of Cement and the Addition of an Air-Entraining Agent on the Effectiveness of Concrete Cover in the Protection of Reinforcement against Corrosion. Materials 2021, 14, 4657. [Google Scholar] [CrossRef]
- Giergiczny, Z. Cementy z dodatkami mineralnymi składnikiem trwałego betonu. Inżynieria Bud. 2010, 67, 275–279. [Google Scholar]
- Małolepszy, J. Durability of concretes made of slag cements. In Proceedings of the Scientific Technical Conference, Szczyrk, Poland, 17–21 May 2002; pp. 225–244. [Google Scholar]
- Deja, J. Trwałość korozyjna spoiw o różnej zawartości granulowanego żużla wielkopiecowego. Cem. Wapno Beton 2007, 74, 280–283. [Google Scholar]
- Ramakrishnan, V. Materials and properties of fiber reinforced concrete. Proc. ISFRC 1987, 1, 3–24. [Google Scholar]
- Brandt, A.M. Fiber reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 2008, 86, 3–9. [Google Scholar] [CrossRef]
- Brandt, A.M. Cement Based Composites: Materials, Mechanical Properties and Performance; Taylor & Francis: Abingdon, UK, 2009. [Google Scholar]
- Karwowska, J.; Łapko, A. The usability of using modern fiber reinforced composites in building constructions. Civ. Environ. Eng. 2011, 2, 41–46. (In Polish) [Google Scholar]
- Zych, T. Współczesny fibrobeton–możliwość kształtowania elementów konstrukcyjnych i form architektonicznych, Wydawnictwo Politechniki Krakowskiej. Czas. Tech. Archit. 2010, 107, 371–386. [Google Scholar]
- Raczkiewicz, W. Effect of concrete addition of selected micro-fibers on the reinforcing bars corrosion in the reinforced concrete specimens. Adv. Mater. Sci. 2016, 16, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.K.; Barr, B.I.G. Strength and fracture properties of industrially prepared steel fiber reinforced concrete. Cem. Concr. Compos. 2003, 25, 321–332. [Google Scholar] [CrossRef]
- Song, P.S.; Hwang, S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 2004, 18, 669–673. [Google Scholar] [CrossRef]
- Skarżyński, Ł.; Suchorzewski, J. Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography. Constr. Build. Mater. 2018, 183, 283–299. [Google Scholar] [CrossRef]
- Linek, M. Airport Cement Concrete with Ceramic dust of increased thermal resistance. Materials 2022, 15, 3673. [Google Scholar] [CrossRef] [PubMed]
- Linek, M.; Wesołowski, M. Selected aspects of evaluating the technical condition of concrete airport pavements in terms of service life. Struct. Environ. 2019, 11, 265–277. [Google Scholar] [CrossRef]
- Logoń, D.; Schabowicz, K.; Roskosz, M.; Fryczowski, K. The Increase in the Elastic Range and Strengthening Control of Quasi Brittle Cement Composites by Low-Module Dispersed Reinforcement: An Assessment of Reinforcement Effects. Materials 2021, 14, 341. [Google Scholar] [CrossRef]
- Alsharie, H. Applications and Prospects of Fiber Reinforced Concrete in Industrial Floors. Open J. Civ. Eng. 2015, 5, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Chen, W. Design and specification of fiber reinforced shotcrete for underground supports. In Proceedings of the Conference: North American Tunneling Conference, Chicago, IL, USA, 10–15 June 2006; pp. 331–335. [Google Scholar]
- Jamroży, Z. Beton ze zbrojeniem rozproszonym dla budownictwa podziemnego. In Górnictwo i Geoinżynieria; Wydawnictwo AGH: Kraków, Poland, 2003; 27, 3/4; pp. 331–335. [Google Scholar]
- Raczkiewicz, W. The effect of micro-reinforcement steel fibers addition on the size of the shrinkage of concrete and corrosion process of the main reinforcement bars. Procedia Eng. 2017, 195, 155–162. [Google Scholar] [CrossRef]
- Raczkiewicz, W.; Kossakowski, P.G. Electrochemical Diagnostics of Sprayed Fiber-Reinforced Concrete Corrosion. Appl. Sci. 2019, 9, 3763. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.germanninstruments.com/corrosion-rate-test-concrete-galvapulse (accessed on 1 January 2023).
- PN-EN 12390-2; Badania Betonu, Część 2: Wykonywanie i Pielęgnacja Próbek do Badań Wytrzymałościowych. Polish Committee for Standardization: Warsaw, Poland, 2019.
- PN-EN 12390-3; Badania Betonu, Część 3: Wytrzymałość na Ściskanie Próbek do Badań. Polish Committee for Standardization: Warsaw, Poland, 2019.
- Hoła, J.; Schabowicz, K. State-of-the-art non-destructive methods for diagnostics testing of building structures–anticipated development trends. Arch. Civ. Mech. Eng. 2010, 10, 5–18. [Google Scholar] [CrossRef]
- Domaneschi, M.; Niccolini, G.; Lacidogna, G.; Cimellaro, G.P. Nondestructive Monitoring Techniques for Crack Detection and Localization in RC Elements. Appl. Sci. 2020, 10, 3248. [Google Scholar] [CrossRef]
- Schabowicz, K. Testing of Materials and Elements in Civil Engineering. Materials 2021, 14, 3412. [Google Scholar] [CrossRef] [PubMed]
- RILEM Technical Committee (Masayasu Ohtsu). Recommendation of RILEM TC 212-ACD: Acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete/Measurement method for acoustic emission signals in concrete. Mater. Struct. 2010, 43, 1177–1181. [Google Scholar] [CrossRef] [Green Version]
- Ohtsu, M.; Isoda, T.; Tomoda, Y. Acoustic emission techniques standardized for concrete structures. J. Acoust. Emiss. 2007, 25, 21–32. [Google Scholar]
- Ohno, K. Application of acoustic emission for structure diagnosis. Diagn. Struct. Health Monit. 2011, 2, 3–18. [Google Scholar]
- Gołaski, L.; Świt, G.; Kalicka, M.; Ono, K. Acoustic Non-Destructive Techniques as a New Method for Evaluation of Damages in Prestressed Concrete Structures: Failure of Concrete Structures. J. Acoust. Emiss. 2006, 24, 187–195. [Google Scholar]
- Gołaski, L.; Goszczyńska, B.; Świt, G.; Trąmpczyński, W. System for the global monitoring and evaluation of damage processes developing within concrete structures under service loads. Balt. J. Road Bridge Eng. 2012, 7, 237–245. [Google Scholar] [CrossRef]
- Ohno, K.; Ohtsu, M. Crack classification in concrete based on acoustic emission. Constr. Build. Mater. 2010, 24, 2339. [Google Scholar] [CrossRef]
- Zheng-Hu, Z.; Jian-Hui, D. A new method for determining the crack classification criterion in acoustic emission parameter analysis. Int. J. Rock Mech. Min. Sci. 2020, 130, 104323. [Google Scholar] [CrossRef]
- Goszczyńska, B. Analysis of the process of crack initiation and evolution in concrete with acoustic emission testing. Arch. Civ. Mech. Eng. 2014, 14, 134–143. [Google Scholar] [CrossRef]
- Goszczyńska, B.; Świt, G.; Trąmpczyński, W. Monitoring of Active Destructive Processes as a Diagnostic Tool for the Structure Technical State Evaluation. Bull. Pol. Acad. Sci. Tech. Sci. 2013, 61, 97–109. [Google Scholar] [CrossRef]
- Bacharz, M.; Bacharz, K.; Trąmpczyński, W. The Correlation between Shrinkage and Acoustic Emission Signals in Early Age Concrete. Materials 2022, 15, 5389. [Google Scholar] [CrossRef] [PubMed]
- Bacharz, M.; Goszczyńska, B.; Trąmpczyński, W. Analysis of destructive processes in unloaded early-age concrete with the acoustic emission method. Procedia Eng. 2015, 108, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Trąmpczyński, W.; Goszczyńska, B.; Bacharz, M. Acoustic Emission for Determining Early Age Concrete Damage as an Important Indicator of Concrete Quality/Condition before Loading. Materials 2020, 13, 3523. [Google Scholar] [CrossRef] [PubMed]
- Świt, G.; Zapała-Sławeta, J. Application of acoustic emission to monitoring the course of the alkali-silica reaction. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68, 169–178. [Google Scholar]
- Ranachowski, Z. Metody Pomiaru i Analizy Sygnału Emisji Akustycznej 1/1997; Instytut Podstawowych Problemów Techniki PAN: Warsaw, Poland, 1997. [Google Scholar]
- Burks, B. Re-examination of nist Acoustic Emission sensor calibration: Part I—Modeling the loading from glass capillary fracture. J. Acoust. Emiss. 2011, 29, 167–174. [Google Scholar]
- Kaphle, R.M.; Tan, A.C.C.; Thambiratnam, D.P.; Chan, T.H.T. Study of Acoustic Emission data analysis tools for structural health monitoring applications. J. Acoust. Emiss. 2011, 29, 244–250. [Google Scholar]
- Hsu, N.; Breckenridge, F. Characterization and calibration of acoustic emission sensors. Mater. Eval. 1981, 39, 60–68. [Google Scholar]
- Skubis, J.; Ranachowski, Z.; Boczar, T.; Lorenc, M. Analiza Możliwości Wykorzystania Metody Wzorcowania Hsu-Nielsena w Układach do Pomiaru EA od Wyładowań Niezupełnych 20/1994; Instytut Podstawowych Problemów Techniki PAN: Warsaw, Poland, 1994. [Google Scholar]
- PK6I Sensor. Medium Frequency Integral Preamplifier Resonant Sensor; Product Data Sheet; MISTRAS Group Inc.: Princeton, NJ, USA, 2011.
- Brunner, A.J.; Terrasi, G.P. Acousto-ultrasonic signal analysis for damage detection in GFRP adhesive joints. J. Acoust. Emiss. 2008, 26, 152–159. [Google Scholar]
- Wróblewska, J.; Kowalski, R. Assessing concrete strength in fire-damaged structures. Constr. Build. Mater. 2020, 254, 119122. [Google Scholar] [CrossRef]
- Królikowski, J.; Witczak, Z. Wzorcowe Źródła Emisji Akustycznej. W: Emisja Akustyczna, Źródła, Metody, Zastosowania, Red. I. Malecki, J. Ranachowski, Polska Akademia Nauk; Instytut Podstawowych Problemów Techniki: Warsaw, Poland, 1994; pp. 467–485. [Google Scholar]
- Teodorczyk, M. Influence of aggregate gradation on the longitudinal wave velocity changes in unloaded concreto. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032084. [Google Scholar] [CrossRef]
- Lovejoy, S. Development of Acoustic Emissions Testing Procedures Applicable to Conventionally Reinforced Concrete Deck Girder Bridges Subjected to Diagonal Tension Cracking. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2006. [Google Scholar]
- Pocket AE and Pocket AEwin User’s Manual; Physical Acoustics Corporation: Princeton, NJ, USA, 2007.
Ingredients | Quantity per 1 m3 of Concrete Mixture |
---|---|
Portland cement CEM I (42,5 N-MSR/NA) | 384 kg |
Mine sand | 680 kg |
Basalt aggregate 2 ÷ 8 | 600 kg |
Basalt aggregate 8 ÷ 16 | 650 kg |
Water | 166 L |
Plasticizer ADVA Flow 440 (BV/FM) | 0.5% (per 1 kg of cement) |
Air entrainer Darex AEA W (LP) | 0.2% (per 1 kg of cement) |
Reinforcement Corrosion Activity, icor (μA/cm2) | Forecasted Rate of Corrosion | ||
---|---|---|---|
Corrosion Current Density | <0.5 | Not forecasted | <0.006 mm⋅year−1 |
0.5 ÷ 2.0 | Irrelevant | 0.006 ÷ 0.023 mm⋅year−1 | |
2.0 ÷ 5.0 | Low | 0.023 ÷ 0.058 mm⋅year−1 | |
5.0 ÷ 15.0 | Moderate | 0.058 ÷ 0.174 mm⋅year−1 | |
>15.0 | High | >0.174 mm⋅year−1 |
Specimens | C | SF_0.25 | SF_0.50 |
---|---|---|---|
1 | 64.93 | 65.41 | 63.19 |
2 | 64.71 | 68.91 | 60.88 |
3 | 61.74 | 67.71 | 62.16 |
Mean value | 63.79 | 67.34 | 62.08 |
Stand. dev. | 1.45 | 1.45 | 0.94 |
Variation (%) | 2.28 | 2.16 | 1.52 |
Specimens SF_0.25 | Specimens SF_0.50 | Specimens C | ||||
---|---|---|---|---|---|---|
Air | Solution | Air | Solution | Air | Solution | |
Stage II | 4.60 | 2.95 | 3.47 | 2.61 | 3.30 | 3.66 |
3.14 | 2.87 | 3.13 | 2.69 | 3.47 | 3.14 | |
2.45 | 10.68 * | 3.23 | 2.77 | 3.59 | 3.28 | |
2.36 | 2.33 | 3.52 | 2.52 | 4.14 | 3.61 | |
Mean value (MPa) | 3.14 | 4.71 (2.72) | 3.34 | 2.65 | 3.63 | 3.42 |
Standard deviation (MPa) | 0.90 | 3.46 (0.28) | 0.16 | 0.09 | 0.31 | 0.22 |
Coefficient of variation (%) | 29 | 70 (10) | 5 | 4 | 9 | 6 |
AE Wave Velocity (m/s) | ||||||
---|---|---|---|---|---|---|
Series C | Series SF_0.25 | Series SF_0.50 | ||||
Air | Solution | Air | Solution | Air | Solution | |
Stage I | ||||||
Specimen 1 | 3746 | 4151 | 3644 | 4043 | 3750 | 4083 |
Specimen 2 | 3828 | 4251 | 3357 | 4160 | 3876 | 4209 |
Mean value (m/s) | 3787 | 4201 | 3501 | 4101 | 3813 | 4146 |
Stand. dev. (m/s) | 41.3 | 49.9 | 143.1 | 58.5 | 62.9 | 63.1 |
Coeff. of variation (%) | 1.1 | 0.01 | 0.04 | 0.01 | 0.02 | 0.02 |
Stage II | ||||||
Specimen 1 | 3980 | 4122 | 3662 | 3665 | 3808 | 3901 |
Specimen 2 | 4102 | 4234 | 3600 | 4109 | 3960 | 4141 |
Mean value (m/s) | 4041 | 4178 | 3631 | 3887 | 3884 | 4021 |
Stand. dev. (m/s) | 60.7 | 55.9 | 30.8 | 221.9 | 76.1 | 120.1 |
Coeff. of variation (%) | 0.02 | 0.01 | 0.01 | 0.06 | 0.02 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raczkiewicz, W.; Bacharz, M.; Bacharz, K.; Teodorczyk, M. Reinforcement Corrosion Testing in Concrete and Fiber Reinforced Concrete Specimens Exposed to Aggressive External Factors. Materials 2023, 16, 1174. https://doi.org/10.3390/ma16031174
Raczkiewicz W, Bacharz M, Bacharz K, Teodorczyk M. Reinforcement Corrosion Testing in Concrete and Fiber Reinforced Concrete Specimens Exposed to Aggressive External Factors. Materials. 2023; 16(3):1174. https://doi.org/10.3390/ma16031174
Chicago/Turabian StyleRaczkiewicz, Wioletta, Magdalena Bacharz, Kamil Bacharz, and Michał Teodorczyk. 2023. "Reinforcement Corrosion Testing in Concrete and Fiber Reinforced Concrete Specimens Exposed to Aggressive External Factors" Materials 16, no. 3: 1174. https://doi.org/10.3390/ma16031174
APA StyleRaczkiewicz, W., Bacharz, M., Bacharz, K., & Teodorczyk, M. (2023). Reinforcement Corrosion Testing in Concrete and Fiber Reinforced Concrete Specimens Exposed to Aggressive External Factors. Materials, 16(3), 1174. https://doi.org/10.3390/ma16031174