Oxidation Kinetics of Ti-6Al-4V Alloys by Conventional and Electron Beam Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermogravimetric Analysis
2.3. Microstructural Characterization
2.4. X-ray Diffraction
2.5. Vickers Microhardness Measurements
3. Results and Discussion
3.1. OM Microstructural Analysis
3.2. Phase Identification by XRD
3.3. Oxidation Kinetics: TGA and FESEM
3.4. Vickers Microhardness Measurements
4. Conclusions
- Oxidation rate obeyed parabolic or quasi-parabolic kinetics between 600 and 900 °C, for Ti-6Al-4V alloy fabricated by EBM is similar to conventional processed having activation energy values of Qcon = 202 kJ/mol and QEBM = 257 kJ/mol.
- The microstructure of Ti-6Al-4V fabricated by EBM is composed of columnar prior β grains elongated in the build direction and α-Ti phase. The conventional samples of Ti-6Al-4V alloy presents deformed α-Ti grains, elongated along the rolling direction, and surrounded by β phase.
- Oxidation of Ti-6Al-4V alloy in as-built and polished P1200 condition at 600, 800, and 900 °C exhibits the formation of an oxide layer formed by Anastasa and/or Rutile phase (TiO2) and an Alumina (Al2O3) phase at the outer scale.
- The EBM technique has a greater tendency to oxidize due to the presence of α, which has greater solubility with oxygen compared to α´.
- Cross-sectional element mapping analysis, the formation of Al2O3 and TiO2 multilayers were identified in both alloys. A greater thickness of the LO is identified in the detection produced by EBM with an approximate thickness of 120 µm and 65 µm for the conventional one, mainly attributed to a rougher surface, which increases the surface area of the material. The OL of both samples presents the formation of multilayers, however, in the EBM samples the presence of areas with greater porosity and less compact was demonstrated, which is consistent to that observed for the oxidation kinetics.
- Results indicate that a significant variation in the hardness change was observed, mainly in the samples exposed to 800 and 900 °C; reaching values of 900 HV (EBM) and 700 HV (conventional) at 800 °C, and 1000 HV (EBM) and 850 HV (conventional) at 900 °C. At 600 °C, no significant effect on hardness was observed due to the low effect of temperature on the microstructural change. At 800 and 900 °C, on the contrary, a significant effect was observed with the formation of the OL and the change in the microstructure alpha-case.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inagaki, I.; Shirai, Y.; Takechi, T.; Ariyasu, N. Application and Features of Titanium for the Aerospace Industry. Nippon. Steel Sumitomo Met. Tech. Rep. 2014, 106, 22–27. [Google Scholar]
- Tamayo, J.A.; Riascos, M.; Vargas, C.A.; Baena, L.M. Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon 2021, 7, e06892. [Google Scholar] [CrossRef]
- GE Additive. Arcam EBM. Additive Manufacturing. Available online: http://www.ge.com/additive/who-we-are/about-arcam (accessed on 15 September 2022).
- Dai, J.; Zhu, J.; Chen, C.; Weng, F. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J. Alloys Compd. 2016, 685, 784–798. [Google Scholar] [CrossRef]
- Ducato, A.; Fratini, L.; La Cascia, M.; Mazzola, G. An Automated Visual Inspection System for the Classification of the Phases of Ti-6Al-4V Titanium Alloy. In Computer Analysis of Images and Patterns; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Smallman, R.E.; Ngan, A.H.W. Chapter 16—Oxidation, Corrosion and Surface Engineering. In Modern Physical Metallurgy, 8th ed.; Smallman, R.E., Ngan, A.H.W., Eds.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 617–657. [Google Scholar]
- Gaddam, R.; Sefer, B.; Pederson, R.; Antti, M.-L. Oxidation and alpha-case formation in Ti–6Al–2Sn–4Zr–2Mo alloy. Mater. Charact. 2015, 99, 166–174. [Google Scholar] [CrossRef]
- Wysocki, B.; Maj, P.; Sitek, R.; Buhagiar, J.; Kurzydłowski, K.J.; Święszkowski, W. Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants. Appl. Sci. 2017, 7, 657. [Google Scholar] [CrossRef]
- Wimpenny, D.I.; Pandey, P.M.; Kumar, L.J. (Eds.) Advances in 3d Printing & Additive Manufacturing Technologies, 2nd ed.; Springer: Singapore, 2018; p. 186. [Google Scholar]
- Kok, Y.; Tan, X.; Tor, S.B.; Chua, C.K. Fabrication and microstructural characterisation of additive manufactured Ti-6Al-4V parts by electron beam melting. Virtual Phys. Prototyp. 2015, 10, 13–21. [Google Scholar] [CrossRef]
- Guo, W.; Wang, H.; Peng, P.; Song, B.; Zhang, H.; Shao, T.; Yan, J. Effect of laser shock processing on oxidation resistance of laser additive manufactured Ti6Al4V titanium alloy. Corros. Sci. 2020, 170, 108655. [Google Scholar] [CrossRef]
- Zhou, Y.; Wen, S.F.; Song, B.; Zhou, X.; Teng, Q.; Wei, Q.S.; Shi, Y.S. A novel titanium alloy manufactured by selective laser melting: Microstructure, high temperature oxidation resistance. Mater. Des. 2016, 89, 1199–1204. [Google Scholar] [CrossRef]
- Brice, D.A.; Samimi, P.; Ghamarian, I.; Liu, Y.; Brice, R.M.; Reidy, R.F.; Collins, P.C. Oxidation behavior and microstructural decomposition of Ti-6Al-4V and Ti-6Al-4V-1B sheet. Corros. Sci. 2016, 112, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Wang, X.; Gong, X.; Chou, K. Scanning Speed Effect on Mechanical Properties of Ti-6Al-4V Alloy Processed by Electron Beam Additive Manufacturing. Procedia Manuf. 2015, 1, 287–295. [Google Scholar] [CrossRef]
- Wysocki, B.; Maj, P.; Krawczyńska, A.; Rożniatowski, K.; Zdunek, J.; Kurzydłowski, K.J.; Święszkowski, W. Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM). J. Mater. Process. Technol. 2017, 241, 13–23. [Google Scholar] [CrossRef]
- Safdar, A.; Wei, L.Y.; Snis, A.; Lai, Z. Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Mater. Charact. 2012, 65, 8–15. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Pramanik, A.; Basak, A.K.; Dong, Y.; Prakash, C.; Debnath, S.; Buddhi, D. A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties. J. Mater. Res. Technol. 2022, 18, 4641–4661. [Google Scholar] [CrossRef]
- Wang, S.; Liao, Z.; Liu, Y.; Liu, W. Influence of thermal oxidation temperature on the microstructural and tribological behavior of Ti6Al4V alloy. Surf. Coat. Technol. 2014, 240, 470–477. [Google Scholar] [CrossRef]
- Guleryuz, H.; Cimenoglu, H. Oxidation of Ti–6Al–4V alloy. J. Alloys Compd. 2009, 472, 241–246. [Google Scholar] [CrossRef]
- Fukai, H.; Iizumi, H.; Minakawa, K.-N.; Ouchi, C. The Effects of the Oxygen-enriched Surface Layer on Mechanical Properties of α+β Type Titanium Alloys. ISIJ Int. 2005, 45, 133–141. [Google Scholar]
- Casadebaigt, A.; Monceau, D.; Hugues, J. High temperature oxidation and embrittlement at 500–600 °C of Ti-6Al-4V alloy fabricated by Laser and Electron Beam Melting. Corr. Sci. 2020, 175, 108875. [Google Scholar] [CrossRef]
- Gaddam, R.; Antti, M.; Pederson, R. Influence of alpha-case layer on the low cycle fatigue properties of Ti-6Al-2Sn-4Zr-2Mo alloy. Mater. Sci. Eng. 2014, 599, 51–56. [Google Scholar] [CrossRef]
- Yan, X.; Shi, C.; Liu, T.; Ye, Y.; Chang, C.; Ma, W.; Liu, M. Effect of heat treatment on the corrosion resistance behavior of selective laser melted Ti6Al4V ELI. Surf. Coat. Technol. 2020, 396, 125955. [Google Scholar] [CrossRef]
- Seth, P.; Jha, J.S.; Alankar, A.; Mishra, S.K. Alpha-case Formation in Ti–6Al–4V in a Different Oxidizing Environment and Its Effect on Tensile and Fatigue Crack Growth Behavior. Oxid. Met. 2022, 97, 77–95. [Google Scholar] [CrossRef]
- De Formanoir, C.; Michotte, S.; Rigo, O.; Germain, L.; Godet, S. Electron beam melted Ti–6Al–4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material. Mater. Sci. Eng. 2016, 652, 105–119. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Hua, Y.; Rong, Z.; Ye, Y.; Chen, K.; Chen, R.; Xue, Q.; Liu, H. Laser shock processing effects on isothermal oxidation resistance of GH586 superalloy. Appl. Surf. Sci. 2015, 330, 439–444. [Google Scholar] [CrossRef]
- Guo, W.; Sun, R.; Song, B.; Zhu, Y.; Li, F.; Che, Z.; Peng, P. Laser shock peening of laser additive manufactured Ti6Al4V titanium alloy. Surf. Coat. Technol. 2018, 349, 503–510. [Google Scholar] [CrossRef]
- Casadebaigt, A.; Hugues, J.; Monceau, D. Influence of Microstructure and Surface Roughness on Oxidation Kinetics at 500–600 °C of Ti–6Al–4V Alloy Fabricated by Additive Manufacturing. Oxid. Met. 2018, 90, 633–648. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Tang, B.; Gui, Y.; Zhao, Q. High-temperature oxidation behavior of the Ti 6Al-4V alloy manufactured by selective laser sintering. Jom 2019, 71, 3600–3605. [Google Scholar] [CrossRef]
- Gaona-Tiburcio, C.; Martinez, A.; Solis, J.; Robledo, P.; López, F.; Miramontes, J.A.; Almeraya Calderon, F. High-Temperature Oxidation of Superalloy C-263 of Rings for Aircraft Engines, Superalloys for Industry Applications; Sinem, C., Ed.; IntechOpen: London, UK, 2018; p. 118. [Google Scholar]
- Karlsson, J.; Norell, M.; Ackelid, U.; Engqvist, H.; Lausmaa, J. Surface oxidation behavior of Ti–6Al–4V manufactured by electron beam melting (EBM®). J. Manuf. Process. 2015, 17 (Suppl. C), 120–126. [Google Scholar] [CrossRef]
- Bermingham, M.J.; Thomson-Larkins, J.; St John, D.H.; Dargusch, M.S. Sensitivity of Ti-6Al-4V components to oxidation during out of chamber Wire + Arc Additive Manufacturing. J. Mater. Process. Technol. 2018, 258, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Caballero, J.D.A.; Bandari, J.; Williams, S. Oxidation of Ti-6Al-4V during wire and A. Casadebaigt; et al. Corrosion Science 175 (2020) 108875 13 arc additive manufacture, 3D Print. Addit. Manuf. 2019, 6, 91–98. [Google Scholar]
- Terner, M.S.; Biamino, S.; Baudana, G.; Penna, A.; Fino, P.; Pavese, M.; Ugues, D.; Badini, C. Initial oxidation behavior in air of TiAl-2Nb and TiAl-8Nb alloys produced by electron beam melting. J. Mater. Eng. Perform. 2015, 24, 3982–3988. [Google Scholar]
- Som, I.; Balla, V.K.; Das, M.; Sukul, D. Thermally oxidized electron beam melted γTiAl: In vitro wear, corrosion, and biocompatibility properties. J. Mater. Res. 2018, 33, 2096–2105. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Pan, Z.; Ma, Y.; Lu, Y.; Shen, C.; Cuiuri, D.; Li, H. Characterization of wire arc additively manufactured titanium aluminide functionally graded material: Microstructure, mechanical properties and oxidation behaviour. Mater. Sci. Eng. A 2018, 734, 110–119. [Google Scholar] [CrossRef]
- Cabral, J.A.; Bastidas, D.M.; Baltazar, M.A.; Zambrano, P.; Bastidas, J.M.; Almeraya, F.; Gaona, C. Corrosion behavior of Zn-TiO2 and Zn-ZnO Electrodeposited Coatings in 3.5% NaCl solution. Int. J. Electrochem. Sci 2019, 14, 4226–4239. [Google Scholar]
- Du, H.L.; Datta, P.K.; Lewis, D.B.; Burnell-Gray, J.S. Air oxidation behaviour of Ti 6Al 4V alloy between 650 and 850°. Corros. Sci. 1994, 36, 631–642. [Google Scholar] [CrossRef]
- Dong, E.; Yu, W.; Cai, Q.; Cheng, L.; Shi, J. High-Temperature Oxidation Kinetics and Behavior of Ti–6Al–4V Alloy. Oxid. Met. 2017, 88, 719–732. [Google Scholar] [CrossRef]
- ASTM E3-95; Standard Practice for Preparation of Metallographic Specimens. ASTM International: West Conshohocken, PA, USA, 1995.
- ASTM E407-07; Standard Practice for Microetching Metals and Alloys. ASTM International: West Conshohocken, PA, USA, 2007.
- Preciado, M.; Bravo, P.M.; Calaf, J.; Ballorca, D. Caracterización de Ti-6Al-4V fabricado mediante fusión por haz de electrones (EBM) por la técnica de miniatura punzonado. An. Mecánica Fract. 2019, 36, 509–514. [Google Scholar]
- Shi, X.; Zeng, W.; Sun, Y.; Han, Y.; Zhao, Y.; Guo, P. Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy. J. Mater. Eng. Perform. 2015, 24, 1754–1762. [Google Scholar] [CrossRef]
- Pushilina, N.; Panin, A.; Syrtanov, M.; Kashkarov, E.; Kudiiarov, V.; Perevalova, O.; Koptyug, A. Hydrogen-Induced Phase Transformation and Microstructure Evolution for Ti-6Al-4V Parts Produced by Electron Beam Melting. Metals 2018, 8, 301. [Google Scholar] [CrossRef] [Green Version]
- Shchelkunov, A.Y.; Egorov, I.; Fomin, A. Study of the hardness distribution after induction heat treatment of titanium over the surface and the cross-section. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 2086. [Google Scholar]
- Ramirez-Arteaga, A.M.; Gonzalez-Rodriguez, J.G.; Campillo, B.; Gaona-Tiburcio, C.; Dominguez-Patiño, G.; Leduc Lezama, L.; Chacon-Nava, J.G.; Neri-Flores, M.A.; Martinez-Villafañe, A. An electrochemical study of the corrosion behavior of a dual phase steel in 0.5 m H2SO4. Int. J. Electrochem. Sci. 2010, 5, 1786–1798. [Google Scholar]
- Kumar, S.; Narayanan, T.S.; Raman, S.G.S.; Seshadri, S. Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time. Mater. Sci. Eng. C 2009, 29, 1942–1949. [Google Scholar] [CrossRef]
- Munoz-Mizuno, A.; Sandoval Amador, A.; Cely, M.M.; Pena-Ballesteros, D.Y.; Hernandez, R. TiO2 nanostructures: Voltage influence in corrosion resistance and human osteosarcoma HOS cell responses. Indian J. Sci. Technol. 2018, 11, 22. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Villafañe, A.; Chacon-Nava, J.G.; Gaona-Tiburcio, C.; Almeraya-Calderon, F.; Domínguez-Patiño, G.; Gonzalez-Rodríguez, G. Oxidation performance of a Fe–13Cr alloy with additions of rare earth elements. Mater. Sci. Eng. A 2003, 363, 15–19. [Google Scholar] [CrossRef]
- Martínez-Villafañe, A.; Almeraya-Calderón, M.F.; Gaona-Tiburcio, C.; Gonzalez-Rodriguez, J.G.; Porcayo-Calderón, J. High-Temperature Degradation and Protection of Ferritic and Austenitic Steels in Steam Generators. J. Mater. Eng. Perform. 1998, 7, 108–113. [Google Scholar] [CrossRef]
- Lara-Banda, M.; Gaona-Tiburcio, C.; Zambrano-Robledo, P.; Delgado, E.M.; Cabral-Miramontes, J.A.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Estupiñan-López, F.; Chacón-Nava, J.G.; Almeraya-Calderón, F. Alternative to nitric acid passivation of 15-5 and 17-4PH stainless steel using electrochemical techniques. Materials 2020, 13, 2836. [Google Scholar] [CrossRef]
- Roudnicka, M.; Mišurák, M.; Vojtech, D. Differences in the Response of Additively Manufactured Titanium Alloy to Heat Treatment—Comparison between SLM and EBM. Manuf. Technol. 2019, 19, 668–673. [Google Scholar] [CrossRef]
- Maldonado-Bandala, E.; Jiménez-Quero, V.; Olguin-Coca, J.; Lizarraga, L.G.; Baltazar-Zamora, M.A.; Ortiz, A.; Almeraya, C.F.; Zambrano, R.P.; Gaona-Tiburcio, C. Electrochemical Characterization of Modified Concretes with Sugar Cane Bagasse Ash. Int. J. Electrochem. Sci. 2011, 6, 4915–4926. [Google Scholar]
- Wagner, C. Diffusion in Solids, Liquids, Gases; Jost, W., Ed.; Academic Press: New York, NY, USA, 1952; p. 652. [Google Scholar]
- Sefer, B. Oxidation and Alpha–Case Phenomena in Titanium Alloys Used in Aerospace Industry: Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V. Ph.D. Thesis, Luleå Tekniska Universitet, Luleå, Suecia, 2014. Volume 112. [Google Scholar]
- Pinilla-Navarro, O.; Siado-Guillen, A.; Cely-Bautista, M.M.; Romero-Mejia, I.; Jaramillo-Colpas, J. Microstructural characterization of titanium alloy Ti6Al4V thermally oxidized. Prospectiva 2018, 16, 68–74. [Google Scholar]
- Soane, N.; Cockburn, A.; Sparkes, M.; O’Neill, W. Deposition of Self-Lubricating Coatings via Supersonic Laser Deposition (SLD). Coatings 2022, 12, 760. [Google Scholar] [CrossRef]
- Kumar, A.; Kushwaha, M.K.; Israr, M.; Kumar, R. Evaluation of mechanical properties of titanium alloy after thermal oxidation process. Trans. Indian Inst. Met. 2020, 73, 1373–1381. [Google Scholar] [CrossRef]
- Jáquez-Muñoz, J.M.; Gaona-Tiburcio, C.; Cabral-Miramontes, J.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Olguín-Coca, J.; López-Léon, L.D.; Flores-De los Rios, J.P.; Almeraya-Calderón, F. Electrochemical Noise Analysis of the Corrosion of Titanium Alloys in NaCl and H2SO4 Solutions. Metals 2021, 11, 105. [Google Scholar] [CrossRef]
- Maytorena-Sánchez, A.; Hernández-Torres, J.; Zamora-Peredo, L. Study and Optimization of the Wear Resistance of Titanium Grade 2 through a Thermal Oxidation Process with Short Oxidation Times. Tribol. Lett. 2022, 70, 75. [Google Scholar] [CrossRef]
- Darmawan, A.S.; Suprapto; Sujitno, T.; Putra, D.E.S.; Pangestu, R.R. Increased Hardness and Wear Resistance of Commercially Pure Titanium by a Plasma Nitrocarburizing. Mater. Sci. Forum 2021, 1029, 33–40. [Google Scholar] [CrossRef]
- Maytorena-Sánchez, A.; Hernández-Torres, J.; Garcia-Gonzalez, L. Analysis of the hardness and tribological properties of grade 2 titanium using the thermal oxidation process at different temperatures. Mater. Lett. 2021, 282, 128679. [Google Scholar] [CrossRef]
Process | Elements | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al | V | Fe | O | C | N | H | Y | Ti | |
EBM powder | 6.68 | 3.78 | 0.19 | 0.13 | 0.02 | 0.02 | 0.002 | <0.001 | Balance |
Conventional Part | 7.14 | 4.03 | 0.21 | _ | _ | _ | _ | _ | Balance |
Powder by ASTM F2924 | 5.5–6.75 | 3.5–4.5 | 0.3 | 0.2 | 0.08 | 0.05 | 0.015 | 0.005 | Balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estupinán-López, F.; Orquiz-Muela, C.; Gaona-Tiburcio, C.; Cabral-Miramontes, J.; Bautista-Margulis, R.G.; Nieves-Mendoza, D.; Maldonado-Bandala, E.; Almeraya-Calderón, F.; Lopes, A.J. Oxidation Kinetics of Ti-6Al-4V Alloys by Conventional and Electron Beam Additive Manufacturing. Materials 2023, 16, 1187. https://doi.org/10.3390/ma16031187
Estupinán-López F, Orquiz-Muela C, Gaona-Tiburcio C, Cabral-Miramontes J, Bautista-Margulis RG, Nieves-Mendoza D, Maldonado-Bandala E, Almeraya-Calderón F, Lopes AJ. Oxidation Kinetics of Ti-6Al-4V Alloys by Conventional and Electron Beam Additive Manufacturing. Materials. 2023; 16(3):1187. https://doi.org/10.3390/ma16031187
Chicago/Turabian StyleEstupinán-López, Francisco, Carlos Orquiz-Muela, Citlalli Gaona-Tiburcio, Jose Cabral-Miramontes, Raul German Bautista-Margulis, Demetrio Nieves-Mendoza, Erick Maldonado-Bandala, Facundo Almeraya-Calderón, and Amit Joe Lopes. 2023. "Oxidation Kinetics of Ti-6Al-4V Alloys by Conventional and Electron Beam Additive Manufacturing" Materials 16, no. 3: 1187. https://doi.org/10.3390/ma16031187
APA StyleEstupinán-López, F., Orquiz-Muela, C., Gaona-Tiburcio, C., Cabral-Miramontes, J., Bautista-Margulis, R. G., Nieves-Mendoza, D., Maldonado-Bandala, E., Almeraya-Calderón, F., & Lopes, A. J. (2023). Oxidation Kinetics of Ti-6Al-4V Alloys by Conventional and Electron Beam Additive Manufacturing. Materials, 16(3), 1187. https://doi.org/10.3390/ma16031187