Assessment of the Impact of Superficial Contamination and Thermo-Oxidative Degradation on the Properties of Post-Consumer Recycled Polypropylene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Melt Flow Index
2.2.2. Differential Scanning Calorimetry
2.2.3. Infrared Spectroscopy (FTIR)
2.2.4. Mechanical Properties
3. Results and Discussion
3.1. Melt Flow Index
3.2. Differential Scanning Calorimetry
3.2.1. Thermal Transitions and Degree of Crystallinity
3.2.2. Oxidation Induction Time
3.3. FTIR Spectroscopy Analysis
3.4. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carraher, C.E. Introduction to Polymer Chemistry; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781466554955. [Google Scholar]
- Recycling of Polymers: Methods, Characterization and Applications; Francis, R. (Ed.) John Wiley & Sons: Weinheim, Alemanha, 2017; ISBN 9783527338481. [Google Scholar]
- European Commission A European Strategy for Plastics in a Circular Economy 2018. Available online: https://www.europarc.org/wp-content/uploads/2018/01/Eu-plastics-strategy-brochure.pdf (accessed on 12 July 2022).
- Plastics Europe Plastics—the Facts 2021 An Analysis of European Plastics Production, Demand and Waste Data. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 24 September 2022).
- Serranti, S.; Bonifazi, G. Post-Consumer Polyolefins (PP-PE) Recognition by Combined Spectroscopic Sensing Techniques. Open Waste Manag. J. 2010, 3, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Karaagac, E.; Jones, M.P.; Koch, T.; Archodoulaki, V.-M. Polypropylene Contamination in Post-Consumer Polyolefin Waste: Characterisation, Consequences and Compatibilisation. Polymers 2021, 13, 2618. [Google Scholar] [CrossRef]
- Garofalo, E.; Di Maio, L.; Scarfato, P.; Pietrosanto, A.; Protopapa, A.; Incarnato, L. Study on Improving the Processability and Properties of Mixed Polyolefin Post-Consumer Plastics for Piping Applications. Polymers 2021, 13, 71. [Google Scholar] [CrossRef]
- Kazemi, Y.; Ramezani Kakroodi, A.; Rodrigue, D. Compatibilization Efficiency in Post-Consumer Recycled Polyethylene/Polypropylene Blends: Effect of Contamination. Polym. Eng. Sci. 2015, 55, 2368–2376. [Google Scholar] [CrossRef]
- Cruz, S.A.; Zanin, M. Evaluation and Identification of Degradative Processes in Post-Consumer Recycled High-Density Polyethylene. Polym. Degrad. Stab. 2003, 80, 31–37. [Google Scholar] [CrossRef]
- Eriksen, M.K.; Christiansen, J.D.; Daugaard, A.E.; Astrup, T.F. Closing the Loop for PET, PE and PP Waste from Households: Influence of Material Properties and Product Design for Plastic Recycling. Waste Manag. 2019, 96, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Khoironi, A.; Hadiyanto, H.; Anggoro, S.; Sudarno, S. Evaluation of Polypropylene Plastic Degradation and Microplastic Identi Fi Cation in Sediments at Tambak Lorok Coastal Area, Semarang, Indonesia. Mar. Pollut. Bull. 2020, 151, 110868. [Google Scholar] [CrossRef]
- Ojeda, T.; Freitas, A.; Birck, K.; Dalmolin, E.; Jacques, R.; Bento, F.; Camargo, F. Degradability of Linear Polyole Fi Ns under Natural Weathering. Polym. Degrad. Stab. 2011, 96, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Rabello, M.S.; White, J.R. Crystallisation and Melting Behaviour of Photodegraded Polypropylene—II. Re-Crystallisation of Degraded Molecules. Polymer (Guildf) 1997, 38, 6389–6399. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, Y.; Dong, X.; Su, L.; Wang, K.; Wang, D. Probing into the Microstructural Evolution of Isotactic Polypropylene during Photo-Oxidation Degradation. Polym. Degrad. Stab. 2021, 183, 12. [Google Scholar] [CrossRef]
- Delva, L.; Ragaert, K.; Degrieck, J.; Cardon, L. The Effect of Multiple Extrusions on the Properties of Montmorillonite Filled Polypropylene. Polymers 2014, 6, 2912–2927. [Google Scholar] [CrossRef] [Green Version]
- Elvira, M.; Tiemblo, P.; Gómez-Elvira, J.M. Changes in the Crystalline Phase during the Thermo-Oxidation of a Metallocene Isotactic Polypropylene. A DSC Study. Polym. Degrad. Stab. 2004, 83, 509–518. [Google Scholar] [CrossRef]
- De Rosa, C.; Auriemma, F.; Circelli, T.; Waymouth, R.M. Crystallisation of the α and γ Forms of Isotactic Polypropylene as a Tool to Test the Degree of Segregation of Defects in the Polymer Chains. Macromolecules 2002, 35, 3622–3629. [Google Scholar] [CrossRef]
- Scott, G. Mechanisms of Polymer Degradation and Stabilisation; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9789401138383. [Google Scholar]
- Billingham, N.C. Localization of Oxidation in Polypropylene. Makromol. Chemie. Macromol. Symp. 1989, 28, 145–163. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Geem, K. Van Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Saikrishnan, S.; Jubinville, D.; Tzoganakis, C.; Mekonnen, T.H. Thermo-Mechanical Degradation of Polypropylene (PP) and Low-Density Polyethylene (LDPE) Blends Exposed to Simulated Recycling. Polym. Degrad. Stab. 2020, 182, 109390. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Kessler, A.; Lieser, J. Odour Reduction on Plastics and Its Measurement. Polym. Test. 1999, 18, 63–71. [Google Scholar] [CrossRef]
- Demets, R.; Roosen, M.; Vandermeersch, L.; Ragaert, K.; Walgraeve, C.; De Meester, S. Development and Application of an Analytical Method to Quantify Odour Removal in Plastic Waste Recycling Processes. Resour. Conserv. Recycl. 2020, 161, 104907. [Google Scholar] [CrossRef]
- Strangl, M.; Fell, T.; Schlummer, M.; Maeurer, A.; Buettner, A. Characterization of Odorous Contaminants in Post-Consumer Plastic Packaging Waste Using Multidimensional Gas Chromatographic Separation Coupled with Olfactometric Resolution. J. Sep. Sci. 2017, 40, 1500–1507. [Google Scholar] [CrossRef] [PubMed]
- Welle, F. Post-Consumer Contamination in High-Density Polyethylene (HDPE) Milk Bottles and the Design of a Bottle-to-Bottle Recycling Process. Food Addit. Contam. 2005, 22, 999–1011. [Google Scholar] [CrossRef]
- Garcia, P.S.; Scuracchio, C.H.; Cruz, S.A. Effect of Residual Contaminants and of Different Types of Extrusion Processes on the Rheological Properties of the Post-Consumer Polypropylene. Polym. Test. 2013, 32, 1237–1243. [Google Scholar] [CrossRef]
- Veroneze, I.B.; Onoue, L.A.; Cruz, S.A. Thermal Stability and Crystallisation Behavior of Contaminated Recycled Polypropylene for Food Contact. J. Polym. Environ. 2022, 30, 3474–3482. [Google Scholar] [CrossRef] [PubMed]
- Strangl, M.; Ortner, E.; Fell, T.; Ginzinger, T.; Buettner, A. Odor Characterization along the Recycling Process of Post-Consumer Plastic Film Fractions. J. Clean. Prod. 2020, 260, 121104. [Google Scholar] [CrossRef]
- Day, M.; Cooney, J.D.; MacKinnon, M. Degradation of Contaminated Plastics: A Kinetic Study. Polym. Degrad. Stab. 1995, 48, 341–349. [Google Scholar] [CrossRef] [Green Version]
- The Association of Plastics Reciclers Polyolefin Standard Laboratory Processing Practices. Available online: https://plasticsrecycling.org/images/Design-Guidance-Tests/APR-O-P-00-olefin-practices.pdf (accessed on 4 July 2022).
- ASTM International D 1238-04; Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM International: West Conshohocken, PA, USA, 2004; pp. 1–13.
- ASTM D 3418-03; Standard Test Method for Transition Temperatures of Polymers by Differential Calorimetry. ASTM International: West Conshohocken, PA, USA, 2004; pp. 1–7.
- Ehrenstein, G.W.; Riedel, G.; Trawiel, P. Thermal Analysis of Plastics; Hanser Publishers: Munchen, Germany, 2004; ISBN 156990362X. [Google Scholar]
- ASTM D3895-14; Standard Test Method for Oxidative-Induction Time of Polyolefins by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2015; p. 8.
- ISO 527-2; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 1996; pp. 1–14.
- ISO 527-1; Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2012; pp. 1–28.
- Antunes, M.C.; Agnelli, J.A.M.; Babetto, A.S.; Bonse, B.C.; Bettini, S.H.P. Correlating Different Techniques in the Thermooxidative Degradation Monitoring of High-Density Polyethylene Containing pro-Degradant and Antioxidants. Polym. Test. 2018, 69, 182–187. [Google Scholar] [CrossRef]
- Cerrada, M.L.; Pérez, E.; Benavente, R.; Ressia, J.; Sarmoria, C.; Vallés, E.M. Gamma Polymorph and Branching Formation as Inductors of Resistance to Electron Beam Irradiation in Metallocene Isotactic Polypropylene. Polym. Degrad. Stab. 2010, 95, 462–469. [Google Scholar] [CrossRef]
- Polypropylene Handbook-Morphology, Blends and Composites; Karger-Kocsis, J.; Bárány, T. (Eds.) Springer: Cham, Suica, 2019; Volume 43, ISBN 9783030129026. [Google Scholar]
- Fitaroni, L.B.; de Oliveira, É.C.; Marcomini, A.L.; Paranhos, C.M.; Freitas, F.L.; Cruz, S.A. Reprocessing and Solid State Polymerization on Contaminated Post-Consumer PET: Thermal and Crystallisation Behavior. J. Polym. Environ. 2020, 28, 91–99. [Google Scholar] [CrossRef]
- Paiva, R.; Veroneze, I.B.; Wrona, M.; Nerín, C.; Cruz, S.A. The Role of Residual Contaminants and Recycling Steps on Rheological Properties of Recycled Polypropylene. J. Polym. Environ. 2022, 30, 494–503. [Google Scholar] [CrossRef]
- Goss, B.G.S.; Nakatani, H.; George, G.A.; Terano, M. Catalyst Residue Effects on the Heterogeneous Oxidation of Polypropylene. Polym. Degrad. Stab. 2003, 82, 119–126. [Google Scholar] [CrossRef]
- Curtzwiler, G.W.; Schweitzer, M.; Li, Y.; Jiang, S.; Vorst, K.L. Mixed Post-Consumer Recycled Polyolefins as a Property Tuning Material for Virgin Polypropylene. J. Clean. Prod. 2019, 239, 117978. [Google Scholar] [CrossRef]
- Smith, B.C. Infrared Spectral Interpretation: A Systematic Approach; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781351438377. [Google Scholar]
- Karger-Kocsis, J. Polypropylene: An A-Z Reference; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; ISBN 9781591241416. [Google Scholar]
- Wang, K.; Peng, Y.; Matadi Boumbimba, R.; Bahlouli, N.; Pessey, D.; Ahzi, S.; Addiego, F.; Rémond, Y. Constitutive Modeling of the Tensile Behavior of Recycled Polypropylene-Based Composites. Materials 2019, 12, 2419. [Google Scholar] [CrossRef] [PubMed]
PP Batch | Washing Temperature (°C) | Drying Temperature (°C) | Cleaning Agents |
---|---|---|---|
rPPcw | 20 | 60 | none |
rPPhw | 75 | 60 | none |
rPhwca | 75 | 60 | Triton X-100 0.3% 1 and NaOH 0.5% 1 |
Parameter | Value |
---|---|
Plasticization chamber temperature (°C) | 230 |
Mold temperature (°C) | 40 |
Injection time (s) | 3 |
Injection pressure (bar) | 300 |
Packing time (s) | 17 |
Packing pressure (bar) | 240 |
Plasticization time (s) | 180 |
Sample | Tm (°C) | Tc (°C) | ΔHm (J/g) | χ (%) |
---|---|---|---|---|
vPP | 165 (±0.31) | 113 (±0.38) | 109 (±2.41) | 53 |
rPPu | 163 (±0.30) | 123 (±0.43) | 98 (±0.66) | 48 |
rPPcw | 162 (±0.21) | 122 (±0.16) | 99 (±0.54) | 48 |
rPPhw | 163 (±0.76) | 122 (±0.60) | 97 (±2.69) | 47 |
rPhwca | 163 (±0.24) | 123 (±072) | 100 (±1.32) | 49 |
Sample | OIT(s) | Standard Deviation |
---|---|---|
Mean | ± | |
vPP | 274.2 | 51.98 |
rPPu | 53.0 | 9.62 |
rPPcw | 41.6 | 5.54 |
rPPhw | 41.6 | 1.39 |
rPhwca | 61.4 | 4.42 |
Wavenumber (cm−1) | Group Vibrations |
---|---|
810 | CH2 r, CC s |
840 | CH2 r |
899 | CH3 r, CH2 r, CH b |
974 | CH3 r, CC s |
998 | CH3 r, CH b, CH2 w |
1167 | CC s, CH3 r, CH b |
1257 | CH b, CH2 t, CH3 r |
1377 | CH3 umbrella bending mode |
1456 | CH3 b assym., CH2 b |
1730 | C = O s (carboxylic acid group) |
2837 | CH2 s sym. |
2918 | CH2 s assym. |
2951 | CH3 s assym. |
3050–3600 | O=H s or N H s |
Batch | E (MPa) | σy (MPa) | σu (MPa) | εb (%) |
---|---|---|---|---|
vPP | 1545.69 (±58.73) | 38.33(±1.73) | 16.48 (±2.31) | 191.41 (±31.27) |
rPPu | 1459.48 (±170.26) | 33.20 (±0.79) | 22.78 (±5.52) | 14.58 (±4.42) |
rPPcw | 1379.72 (±59.13) | 33.90 (±0.70) | 23.32 (±4.45) | 18.75 (±4.17) |
rPPhw | 1619.88 (±160.29) | 33.90 (±077) | 23.51 (±2.98) | 16.97 (±1.79) |
rPhwca | 1516.02 (±190.92) | 33.52 (±0.06) | 19.68 (±5.07) | 20.76 (±4.92) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prior, L.; Oliveira, M.S.A.; Zhiltsova, T. Assessment of the Impact of Superficial Contamination and Thermo-Oxidative Degradation on the Properties of Post-Consumer Recycled Polypropylene. Materials 2023, 16, 1198. https://doi.org/10.3390/ma16031198
Prior L, Oliveira MSA, Zhiltsova T. Assessment of the Impact of Superficial Contamination and Thermo-Oxidative Degradation on the Properties of Post-Consumer Recycled Polypropylene. Materials. 2023; 16(3):1198. https://doi.org/10.3390/ma16031198
Chicago/Turabian StylePrior, Laura, Mónica S. A. Oliveira, and Tatiana Zhiltsova. 2023. "Assessment of the Impact of Superficial Contamination and Thermo-Oxidative Degradation on the Properties of Post-Consumer Recycled Polypropylene" Materials 16, no. 3: 1198. https://doi.org/10.3390/ma16031198
APA StylePrior, L., Oliveira, M. S. A., & Zhiltsova, T. (2023). Assessment of the Impact of Superficial Contamination and Thermo-Oxidative Degradation on the Properties of Post-Consumer Recycled Polypropylene. Materials, 16(3), 1198. https://doi.org/10.3390/ma16031198