Microstructure and Mechanical Properties of Nanoparticulate Y2O3 Modified AlSi10Mg Alloys Manufactured by Selective Laser Melting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SLM Process
2.3. Microstructure Characterization
2.4. Mechanical Tests
3. Results and Discussion
3.1. Phase Composition and Microstructural Characterization
3.2. Grain Size and Crystallographic Texture
3.3. Mechanical Properties
4. Conclusions
- Adding 0.5 wt.% Y2O3 nanoparticles can significantly refine the grains from 1.742 to 0.873 μm, but further addition of Y2O3 nanoparticles will result in a grain size increase and the decrease in the relative density;
- The optimal nano-Y2O3 particle addition level is 0.5 wt.%, with a higher ultimate tensile strength of 500.3 MPa, a yield strength of 322.3 MPa, and an elongation of 9.7%. Both the Orowan strengthening effect and the load-bearing strengthening effect show that the addition of nano-Y2O3 is beneficial to the grain refinement. However, since the grain size gradually increases and the relative density decreases as the addition level of Y2O3 passes 1 wt%, the strength of the material also experiences a decrease;
- The wear resistance of the Y2O3-AlSi10Mg nanocomposites is improved compared to that of the AlSi10Mg alloy. When adding 0.5 wt.% Y2O3 nanoparticles, the wear rate is about 39% lower than that of the AlSi10Mg alloys, but when the addition of Y2O3 increases, the wear performance gradually decreases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhao, C.C.; Zhou, X.; Shen, Z.J.; Liu, W. Microstructure of selective laser melted AlSi10Mg alloy. Mater. Des. 2019, 168, 107677. [Google Scholar] [CrossRef]
- Han, C.J.; Fang, Q.H.; Shi, Y.S.; Tor, S.B.; Chua, C.K.; Zhou, K. Recent Advances on High-Entropy Alloys for 3D Printing. Adv. Mater. 2020, 32, 1903855. [Google Scholar] [CrossRef] [PubMed]
- Bartolomeu, F.; Buciumeanu, M.; Pinto, E.; Alves, N.; Carvalho, O.; Silva, F.S.; Miranda, G. 316L stainless steel mechanical and tribological behavior-A comparison between selective laser melting, hot pressing and conventional casting. Addit. Manuf. 2017, 16, 81–89. [Google Scholar] [CrossRef]
- Liang, L.; Xu, M.F.; Chen, Y.H.; Zhang, T.M.; Tong, W.; Liu, H.T.; Wang, H.J.; Li, H.X. Effect of welding thermal treat-ment on the microstructure and mechanical properties of nickel-based superalloy fabricated by selective laser melting. Mater. Sci. Eng. A-Struct. 2021, 819, 16. [Google Scholar] [CrossRef]
- Yu, W.H.; Sing, S.L.; Chua, C.K.; Tian, X.L. Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting. J. Alloy. Compd. 2019, 792, 574–581. [Google Scholar] [CrossRef]
- Abedi, H.R.; Hanzaki, A.Z.; Azami, M.; Kahnooji, M.; Rahmatabadi, D. The high temperature flow behavior of additively manufactured Inconel 625 superalloy. Mater. Res. Express 2019, 6, 15. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Baxter, C.; Amirkhiz, B.S.; Mohammadi, M. Strengthening mechanisms in direct metal laser sintered AlSi10Mg: Comparison between virgin and recycled powders. Addit. Manuf. 2018, 23, 108–120. [Google Scholar] [CrossRef]
- Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater. Des. 2015, 65, 417–424. [Google Scholar] [CrossRef]
- Kim, D.K.; Woo, W.; Hwang, J.H.; An, K.; Choi, S.H. Stress partitioning behavior of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction. J. Alloy. Compd. 2016, 686, 281–286. [Google Scholar] [CrossRef]
- Tan, Q.Y.; Zhang, J.Q.; Mo, N.; Fan, Z.Q.; Yin, Y.; Bermingham, M.; Liu, Y.G.; Huang, H.; Zhang, M.X. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles. Addit. Manuf. 2020, 32, 101034. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Liu, T.T.; Zhang, C.D.; Zhang, K.; Li, M.C.; Ma, T.; Liao, W.H. Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting. Mater. Sci. Eng. A 2018, 734, 171–177. [Google Scholar] [CrossRef]
- Luo, S.X.; Li, R.F.; He, P.Y.; Yue, H.Y.; Gu, J.Y. Investigation on the Microstructure and Mechanical Properties of CNTs-AlSi10Mg Composites Fabricated by Selective Laser Melting. Materials 2021, 14, 838. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Mandal, A.; Sathish, N.; Agrawal, A.K.; Srivastava, A.K. Investigation of porosity, microstructure and mechanical properties of additively manufactured graphene reinforced AlSi10Mg composite. Addit. Manuf. 2020, 33, 101095. [Google Scholar] [CrossRef]
- Gu, D.D.; Wang, H.Q.; Dai, D.H.; Yuan, P.P.; Meiners, W.; Poprawe, R. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting. Scr. Mater. 2015, 96, 25–28. [Google Scholar] [CrossRef]
- Li, X.P.; Ji, G.; Chen, Z.; Addad, A.; Wu, Y.; Wang, H.W.; Vleugels, J.; Van Humbeeck, J.; Kruth, J.P. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater. 2017, 129, 183–193. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhuo, L.C.; Yin, E.H.; Zhao, Z. Microstructure evolution and properties of nanoparticulate SiC modified AlSi10Mg alloys. Mater. Sci. Eng. A 2021, 808, 140864. [Google Scholar] [CrossRef]
- Zhu, S.; Song, S.; Chen, Y.; Zhao, F.; Yang, W.; Li, Z.; Shi, Y.; Yu, S. Effect of in-situ Al2O3 on tensile strength and ductility of AlSi10Mg alloy fabricated by selective laser melting. Mater. Lett. 2022, 308, 131108. [Google Scholar] [CrossRef]
- Dai, D.H.; Gu, D.D.; Xia, M.J.; Ma, C.L.; Chen, H.Y.; Zhao, T.; Hong, C.; Gasser, A.; Poprawe, R. Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite. Surf. Coat. Technol. 2018, 349, 279–288. [Google Scholar] [CrossRef]
- Konopatsky, A.S.; Kvashnin, D.G.; Corthay, S.; Boyarintsev, I.; Firestein, K.L.; Orekhov, A.; Arkharova, N.; Golberg, D.V.; Shtansky, D.V. Microstructure evolution during AlSi10Mg molten alloy/BN microflake interactions in metal matrix composites obtained through 3D printing. J. Alloy. Compd. 2021, 859, 157765. [Google Scholar] [CrossRef]
- Gao, C.F.; Xiao, Z.Y.; Liu, Z.Q.; Zhu, Q.L.; Zhang, W.W. Selective laser melting of nano-TiN modified AlSi10Mg composite powder with low laser reflectivity. Mater. Lett. 2019, 236, 362–365. [Google Scholar] [CrossRef]
- Kong, D.C.; Dong, C.F.; Ni, X.Q.; Liang, Z.; Li, X.G. In-situ observation of asymmetrical deformation around inclusion in a heterogeneous additively manufactured 316L stainless steel. J. Mater. Sci. Technol. 2021, 89, 133–140. [Google Scholar] [CrossRef]
- Moussa, M.E.; El-Hadad, S.; Khalifa, W. Influence of chemical modification by Y2O3 on eutectic Si characteristics and tensile properties of A356 alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 1365–1374. [Google Scholar] [CrossRef]
- Hu, Z.P.; Guan, K.; Qian, Z.; Dong, J.; Wu, J.; Ma, Z.Q. Simultaneous enhancement of strength and ductility in selective laser melting manufactured 316L alloy by employing Y2O3 coated spherical powder as precursor. J. Alloy. Compd. 2022, 899, 163262. [Google Scholar] [CrossRef]
- Hu, Z.P.; Zhao, Y.N.; Guan, K.; Wang, Z.M.; Ma, Z.Q. Pure tungsten and oxide dispersion strengthened tungsten manufactured by selective laser melting: Microstructure and cracking mechanism. Addit. Manuf. 2020, 36, 101579. [Google Scholar] [CrossRef]
- Li, M.H.; Wang, L.L.; Yang, H.O.; Zhang, S.Y.; Lin, X.; Huang, W.D. Microstructure and mechanical properties of Y2O3 strengthened Inconel 625 alloy fabricated by selective laser melting. Mater. Sci. Eng. A 2022, 854, 143813. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Liu, J.; Zhang, A.; Zhou, Y.; Wei, Q.S.; Yan, C.Z.; Shi, Y.S. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng. A 2016, 663, 116–125. [Google Scholar] [CrossRef]
- Trevisan, F.; Calignano, F.; Lorusso, M.; Pakkanen, J.; Aversa, A.; Ambrosio, E.P.; Lombardi, M.; Fino, P.; Manfredi, D. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties. Materials 2017, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Yan, J.; Niu, X. Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy. Materials 2020, 13, 4157. [Google Scholar] [CrossRef]
- Gao, Y.; Jin, Z.H. Interaction between lattice dislocations and low-angle grain boundaries in Ni via molecular dynamics simulations. Mol. Simul. 2017, 43, 1172–1178. [Google Scholar] [CrossRef]
- Zhang, M.X.; Kelly, P.M. Crystallographic features of phase transformations in solids. Prog. Mater. Sci. 2009, 54, 1101–1170. [Google Scholar] [CrossRef]
- Xiao, Y.K.; Chen, H.; Bian, Z.Y.; Sun, T.T.; Ding, H.; Yang, Q.; Wu, Y.; Lian, Q.; Chen, Z.; Wang, H.W. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles. J. Mater. Sci. Technol. 2022, 109, 254–266. [Google Scholar] [CrossRef]
- Jing, L.J.; Pan, Y.; Lu, T.; Pi, J.H.; Gu, T.F. Nucleation potency prediction of LaB6 with E2EM model and its influence on microstructure and tensile properties of Al-7Si-0.3Mg alloy. Trans. Nonferrous Met. Soc. China 2018, 28, 1687–1694. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, D.L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 2006, 54, 1321–1326. [Google Scholar] [CrossRef]
- Fan, Z.H.; Yan, X.C.; Fu, Z.Y.; Niu, B.; Chen, J.F.; Hu, Y.J.; Chang, C.; Yi, J.L. In situ formation of D022-Al3Ti during selective laser melting of nano-TiC/AlSi10Mg alloy prepared by electrostatic self-assembly. Vacuum 2021, 188, 110179. [Google Scholar] [CrossRef]
- Liu, Y.X.; Wang, R.C.; Peng, C.Q.; Cai, Z.Y.; Zhou, Z.H.; Li, X.G.; Cao, X.Y. Microstructural evolution and mechanical performance of in-situ TiB2/AlSi10Mg composite manufactured by selective laser melting. J. Alloy. Compd. 2021, 853, 157287. [Google Scholar] [CrossRef]
- Hansen, N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Munoz-Morris, M.A.; Morris, D.G. Contribution of microstructural parameters to strengthening in an ultrafine-grained Al-7% Si alloy processed by severe deformation. Acta Mater. 2007, 55, 1319–1330. [Google Scholar] [CrossRef] [Green Version]
- AlMangour, B.; Kim, Y.-K.; Grzesiak, D.; Lee, K.-A. Novel TiB2-reinforced 316L stainless steel nanocomposites with excellent room-and high-temperature yield strength developed by additive manufacturing. Compos. Pt. B-Eng. 2019, 156, 51–63. [Google Scholar] [CrossRef]
- Ahmadi, M.; Tabary, S.; Rahmatabadi, D.; Ebrahimi, M.S.; Abrinia, K.; Hashemi, R. Review of selective laser melting of magnesium alloys: Advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J. Mater. Res. Technol-JMRT 2022, 19, 1537–1562. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Wang, Z.T.; Yu, H.; Ning, Y.Q. Microstructural origin and control mechanism of the mixed grain structure in Ni-based superalloys. J. Alloy. Compd. 2022, 900, 11. [Google Scholar] [CrossRef]
- Xie, J.L.; Chen, Y.H.; Yin, L.M.; Zhang, T.M.; Wang, S.L.; Wang, L.T. Microstructure and mechanical properties of ultrasonic spot welding TiNi/Ti6Al4V dissimilar materials using pure Al coating. J. Manuf. Process. 2021, 64, 473–480. [Google Scholar] [CrossRef]
- Xi, L.X.; Guo, S.; Gu, D.D.; Guo, M.; Lin, K.J. Microstructure development, tribological property and underlying mechanism of laser additive manufactured submicro-TiB2 reinforced Al-based composites. J. Alloy. Compd. 2020, 819, 9. [Google Scholar] [CrossRef]
Al | Si | Mg | Fe | Zn | Mn | Cu | Ni | Ti | Pb | Sn |
---|---|---|---|---|---|---|---|---|---|---|
Bal. | 10.23 | 0.33 | 0.073 | 0.011 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 |
Laser Power (W) | Hatching Distance (mm) | Scanning Speed (mm/s) | Layer Thickness (mm) |
---|---|---|---|
200 | 0.12 | 1200 | 0.02 |
Samples | AlSi10Mg Content | Y2O3 Content | Relative Density |
---|---|---|---|
S0 | 100 | 0 | 98.89 |
S1 | 99.5 | 0.5 | 99.45 |
S2 | 99.0 | 1.0 | 99.20 |
S3 | 98.5 | 1.5 | 98.62 |
S4 | 98.0 | 2.0 | 98.13 |
Specimens | Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | Vickers Hardness (HV0.1) |
---|---|---|---|---|
S0 | 431.2 ± 5.4 | 264.4 ± 5.8 | 7 ± 0.5 | 119.5 ± 3.5 |
S1 | 500.3 ± 7.1 | 322.3 ± 4.7 | 9.7 ± 0.3 | 128.8 ± 5.1 |
S2 | 470.8 ± 7.4 | 298.9 ± 5.0 | 6.1 ± 0.6 | 145.6 ± 5.9 |
S3 | 464.3 ± 8.4 | 289.2 ± 6.8 | 6.4 ± 0.6 | 128.4 ± 3.9 |
S4 | 456.6 ± 17.6 | 273.8 ± 5.4 | 4.8 ± 0.2 | 129.2 ± 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, Z.; Gu, Q.; Hou, X.; Meng, F.; Zhuang, X.; Li, L.; Liu, B.; Feng, J. Microstructure and Mechanical Properties of Nanoparticulate Y2O3 Modified AlSi10Mg Alloys Manufactured by Selective Laser Melting. Materials 2023, 16, 1222. https://doi.org/10.3390/ma16031222
Zhang F, Zhang Z, Gu Q, Hou X, Meng F, Zhuang X, Li L, Liu B, Feng J. Microstructure and Mechanical Properties of Nanoparticulate Y2O3 Modified AlSi10Mg Alloys Manufactured by Selective Laser Melting. Materials. 2023; 16(3):1222. https://doi.org/10.3390/ma16031222
Chicago/Turabian StyleZhang, Fuxu, Zhenyu Zhang, Qinming Gu, Xuezhang Hou, Fanning Meng, Xuye Zhuang, Li Li, Bingxin Liu, and Junyuan Feng. 2023. "Microstructure and Mechanical Properties of Nanoparticulate Y2O3 Modified AlSi10Mg Alloys Manufactured by Selective Laser Melting" Materials 16, no. 3: 1222. https://doi.org/10.3390/ma16031222
APA StyleZhang, F., Zhang, Z., Gu, Q., Hou, X., Meng, F., Zhuang, X., Li, L., Liu, B., & Feng, J. (2023). Microstructure and Mechanical Properties of Nanoparticulate Y2O3 Modified AlSi10Mg Alloys Manufactured by Selective Laser Melting. Materials, 16(3), 1222. https://doi.org/10.3390/ma16031222