Hardness Distribution of Al2050 Parts Fabricated Using Additive Friction Stir Deposition
Abstract
:1. Introduction
2. Additive Friction Stir Deposition of Al2050 Alloy
2.1. How an AFSD Machine Functions
2.2. Feedstock Material Properties
2.3. AFSD Parts Sample Preparation
3. Results
3.1. Layer-by-Layer Arrangement
3.2. Vickers Hardness Distribution
4. Discussions
4.1. Phases of Al2050 as a Function of Temperature
4.2. Deposition Process Temperature History
4.3. Change of XRD Pattern after the AFSD Process
4.4. Change of Composition Distribution of Al2050 after the AFSD Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ASTM ISO/ASTM52900-21; Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ASTM: West Conshohocken, PA, USA, 2021.
- Stubblefield, G.G.; Fraser, K.; Phillips, B.J.; Jordon, J.B.; Allison, P.G. A meshfree computational framework for the numerical simulation of the solid-state additive manufacturing process, additive friction stir-deposition (AFS-D). Mater. Des. 2021, 202, 109514. [Google Scholar] [CrossRef]
- Avery, D.Z.; Rivera, O.G.; Mason, C.J.T.; Phillips, B.J.; Jordon, J.B.; Su, J.; Hardwick, N.; Allison, P.G. Fatigue Behavior of Solid-State Additive Manufactured Inconel 625. Jom 2018, 70, 2475–2484. [Google Scholar] [CrossRef]
- Williams, M.B.; Robinson, T.W.; Williamson, C.J.; Kinser, R.P.; Ashmore, N.A.; Allison, P.G.; Jordon, J.B. Elucidating the Effect of Additive Friction Stir Deposition on the Resulting Microstructure and Mechanical Properties of Magnesium Alloy WE43. Metals 2021, 11, 1739. [Google Scholar] [CrossRef]
- Yu, H.Z.; Jones, M.E.; Brady, G.W.; Griffiths, R.J.; Garcia, D.; Rauch, H.A.; Cox, C.D.; Hardwick, N. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scr. Mater. 2018, 153, 122–130. [Google Scholar] [CrossRef]
- Schultz, J.P.; Creehan, K. Friction Stir Fabrication. U.S. Patent 8,636,194 B2, 28 January 2014. [Google Scholar]
- Rutherford, B.A.; Avery, D.Z.; Phillips, B.J.; Rao, H.M.; Doherty, K.J.; Allison, P.G.; Brewer, L.N.; Jordon, J.B. Effect of Thermomechanical Processing on Fatigue Behavior in Solid-State Additive Manufacturing of Al-Mg-Si Alloy. Metals 2020, 10, 947. [Google Scholar] [CrossRef]
- Kandasamy, K. Solid State Joining Using Additive Frction Stir Processing. U.S. Patent 9,511,445 B2, 6 December 2016. [Google Scholar]
- Garcia, D.; Hartley, W.D.; Rauch, H.A.; Griffiths, R.J.; Wang, R.; Kong, Z.J. In Situ Investigation into Temperature Evolution and Heat Generation during Additive Friction Stir Deposition: A Comparative Study of Cu and Al-Mg-Si. Addit. Manuf. 2020, 34, 101386. [Google Scholar] [CrossRef]
- Anderson-Wedge, K.; Avery, D.Z.; Daniewicz, S.R.; Sowards, J.W.; Allison, P.G.; Jordon, J.B.; Amaro, R.L. Characterization of the fatigue behavior of additive friction stir-deposition AA2219. Int. J. Fatigue 2021, 142, 105951. [Google Scholar] [CrossRef]
- ASTM ISO/ASTM52921-13(2019); Standard Terminology for Additive Manufacturing—Coordinate Systems and Test Methodologies. ASTM: West Conshohocken, PA, USA, 2019.
- Griffiths, R.J.; Perry, M.E.J.; Sietins, J.M.; Zhu, Y.; Hardwick, N.; Cox, C.D.; Rauch, H.A.; Yu, H.Z. A Perspective on Solid-State Additive Manufacturing of Aluminum Matrix Composites Using MELD. J. Mater. Eng. Perform. 2018, 28, 648–656. [Google Scholar] [CrossRef]
- Jordon, J.B.; Allison, P.G.; Phillips, B.J.; Avery, D.Z.; Kinser, R.P.; Brewer, L.N.; Cox, C.; Doherty, K. Direct recycling of machine chips through a novel solid-state additive manufacturing process. Mater. Des. 2020, 193, 108850. [Google Scholar] [CrossRef]
- Griffiths, R.J.; Petersen, D.T.; Garcia, D.; Yu, H.Z. Additive Friction Stir-Enabled Solid-State Additive Manufacturing for the Repair of 7075 Aluminum Alloy. Appl. Sci. 2019, 9, 3486. [Google Scholar] [CrossRef] [Green Version]
- Rivera, O.G.; Allison, P.G.; Jordon, J.B.; Rodriguez, O.L.; Brewer, L.N.; McClelland, Z.; Whittington, W.R.; Francis, D.; Su, J.; Martens, R.L.; et al. Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing. Mater. Sci. Eng. A 2017, 694, 1–9. [Google Scholar] [CrossRef]
- Mishra, R.S.; Haridas, R.S.; Agrawal, P. Friction stir-based additive manufacturing. Sci. Technol. Weld. Join. 2022, 27, 141–165. [Google Scholar] [CrossRef]
- Rivera, O.G.; Allison, P.G.; Brewer, L.N.; Rodriguez, O.L.; Jordon, J.B.; Liu, T.; Whittington, W.R.; Martens, R.L.; McClelland, Z.; Mason, C.J.T.; et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition. Mater. Sci. Eng. A 2018, 724, 547–558. [Google Scholar] [CrossRef]
- Zeng, C.; Ghadimi, H.; Ding, H.; Nemati, S.; Garbie, A.; Raush, J.; Guo, S. Microstructure Evolution of Al6061 Alloy Made by Additive Friction Stir Deposition. Materials 2022, 15, 3676. [Google Scholar] [CrossRef] [PubMed]
- Priedeman, J.L.; Phillips, B.J.; Lopez, J.J.; Tucker Roper, B.E.; Hornbuckle, B.C.; Darling, K.A.; Jordon, J.B.; Allison, P.G.; Thompson, G.B. Microstructure Development in Additive Friction Stir-Deposited Cu. Metals 2020, 10, 1538. [Google Scholar] [CrossRef]
- Estrin, Y.; Bréchet, Y.; Dunlop, J.; Fratzl, P. (Eds.) Architectured Materials in Nature and Engineering: Archimats (Springer Series in Materials Science, 282); Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Avettand-Fènoël, M.N.; Taillard, R. Effect of a pre or postweld heat treatment on microstructure and mechanical properties of an AA2050 weld obtained by SSFSW. Mater. Des. 2016, 89, 348–361. [Google Scholar] [CrossRef]
- Avettand-Fenoel, M.-N.; Taillard, R. Heterogeneity of the Nugget Microstructure in a Thick 2050 Al Friction-Stirred Weld. Met. Mater. Trans. A 2014, 46, 300–314. [Google Scholar] [CrossRef]
- Sidhar, H.; Mishra, R.S.; Reynolds, A.P.; Baumann, J.A. Impact of thermal management on post weld heat treatment efficacy in friction stir welded 2050-T3 alloy. J. Alloys Compd. 2017, 722, 330–338. [Google Scholar] [CrossRef]
- Dhondt, M.; Aubert, I.; Saintier, N.; Olive, J.-M. Mechanical behavior of periodical microstructure induced by friction stir welding on Al–Cu–Li 2050 alloy. Mater. Sci. Eng. A 2015, 644, 69–75. [Google Scholar] [CrossRef]
- Lu, D.-D.; Li, J.-F.; Ning, H.; Ma, P.-C.; Chen, Y.-L.; Zhang, X.-H.; Zhang, K.; Li, J.-M.; Zhang, R.-F. Effects of microstructure on tensile properties of AA2050-T84 Al-Li alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 1189–1204. [Google Scholar] [CrossRef]
- Lequeu, P.; Smith, K.P.; Daniélou, A. Aluminum-Copper-Lithium Alloy 2050 Developed for Medium to Thick Plate. J. Mater. Eng. Perform. 2009, 19, 841–847. [Google Scholar] [CrossRef]
- Battelle Memorial, I. Metallic Materials Properties Development and Standardization (MMPDS-17); Battelle Memorial Institute: Columbus, OH, USA, 2022. [Google Scholar]
- Hafley, R.A.; Domack, M.S.; Hales, S.J.; Shenoy, R.N. Evaluation of Aluminum Alloy 2050-T84 Microstructure and Mechanical Properties at Ambient and Cryogenic Temperatures; Nasa Center for Aeroespace Information: Hanover, MD, USA, 2011.
- Corporation, M.M. MELD Manufacturing Corporation. Available online: https://www.meldmanufacturing.com/ (accessed on 1 January 2023).
- Yu, H.Z.; Mishra, R.S. Additive friction stir deposition: A deformation processing route to metal additive manufacturing. Mater. Res. Lett. 2020, 9, 71–83. [Google Scholar] [CrossRef]
- Committee, A.D.N.A. Aluminum Alloy, Plate 3.5 Cu—1.0Li—0.40Mg—0.35 Mn—0.45Ag—0.12Zr (2050-T84) Solution Heat Treated, Stress Relieved, and Artificially Aged AMS4413; SAE International: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Rioja, R.J.; Liu, J. The Evolution of Al-Li Base Products for Aerospace and Space Applications. Metall. Mater. Trans. A 2012, 43, 3325–3337. [Google Scholar] [CrossRef]
- Prasad, N.E.; Amol, G.; Wanhill, R.J.H. Aluminum-Lithium Alloys: Processing, Properties, and Applications; Butterworth-Heinemann: Boston, MA, USA, 2014. [Google Scholar]
- Bello, N.; Larignon, C.; Douin, J. Long-term thermal ageing of the 2219-T851 and the 2050-T84 Al-Cu alloys. Mater. Today Commun. 2021, 29, 102834. [Google Scholar] [CrossRef]
- Chemin, A.E.A.; Afonso, C.M.; Pascoal, F.A.; Maciel, C.I.d.S.; Ruchert, C.O.F.T.; Bose Filho, W.W. Characterization of phases, tensile properties, and fracture toughness in aircraft-grade aluminum alloys. Mater. Des. Process. Commun. 2019, 1, e79. [Google Scholar] [CrossRef]
- Kaufman, J.G. Understanding the Aluminum Temper Designation System. 2013. Available online: http://hdl.handle.net/11115/186 (accessed on 1 January 2023).
- Dong, H.; Li, X.; Xu, K.; Zang, Z.; Liu, X.; Zhang, Z.; Xiao, W.; Li, Y. A Review on Solid-State-Based Additive Friction Stir Deposition. Aerospace 2022, 9, 565. [Google Scholar] [CrossRef]
- Sharma, S.; Mani Krishna, K.V.; Radhakrishnan, M.; Pantawane, M.V.; Patil, S.M.; Joshi, S.S.; Banerjee, R.; Dahotre, N.B. A pseudo thermo-mechanical model linking process parameters to microstructural evolution in multilayer additive friction stir deposition of magnesium alloy. Mater. Des. 2022, 224, 111412. [Google Scholar] [CrossRef]
E, Modulus of Elasticity | Ec, Modulus of Elasticity in Compression | G, Modulus of Rigidity | Poisson’s Ratio | Density |
---|---|---|---|---|
75 GPa (10.9 × 103 ksi) | 78 GPa (11.3 × 103 ksi) | 28.3 GPa (4.1 × 103 ksi) | 0.33 | 2713 kg/m3 (0.098 lb/in3) |
Layer No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | 95 | 83 | 145 | 122 | 165 | 141 | 177 | 151 | 186 | 161 | 185 | 163 | 188 | 167 | 178 |
Max | 177 | 140 | 213 | 157 | 210 | 171 | 213 | 177 | 209 | 187 | 202 | 182 | 197 | 184 | 185 |
Layer No. | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
Min | 160 | 186 | 166 | 183 | 164 | 186 | 167 | 193 | 172 | 198 | 176 | 187 | 171 | 180 | 168 |
Max | 177 | 193 | 183 | 187 | 180 | 194 | 185 | 199 | 190 | 204 | 196 | 195 | 188 | 187 | 185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghadimi, H.; Ding, H.; Emanet, S.; Talachian, M.; Cox, C.; Eller, M.; Guo, S. Hardness Distribution of Al2050 Parts Fabricated Using Additive Friction Stir Deposition. Materials 2023, 16, 1278. https://doi.org/10.3390/ma16031278
Ghadimi H, Ding H, Emanet S, Talachian M, Cox C, Eller M, Guo S. Hardness Distribution of Al2050 Parts Fabricated Using Additive Friction Stir Deposition. Materials. 2023; 16(3):1278. https://doi.org/10.3390/ma16031278
Chicago/Turabian StyleGhadimi, Hamed, Huan Ding, Selami Emanet, Mojtaba Talachian, Chase Cox, Michael Eller, and Shengmin Guo. 2023. "Hardness Distribution of Al2050 Parts Fabricated Using Additive Friction Stir Deposition" Materials 16, no. 3: 1278. https://doi.org/10.3390/ma16031278
APA StyleGhadimi, H., Ding, H., Emanet, S., Talachian, M., Cox, C., Eller, M., & Guo, S. (2023). Hardness Distribution of Al2050 Parts Fabricated Using Additive Friction Stir Deposition. Materials, 16(3), 1278. https://doi.org/10.3390/ma16031278