Review on Load Transfer Mechanisms of Asphalt Mixture Meso-Structure
Abstract
:1. Introduction
- (1)
- Present the comprehensive review of the test methods and techniques for the load transfer mechanism of asphalt mixtures.
- (2)
- Collect and discuss the characteristic parameters of the load transfer mechanism.
- (3)
- Compare the load transfer mechanism of asphalt mixtures under different loading conditions including compaction degree, different loading frequency, tension–compression, shear condition, and bending condition.
- (4)
- Provide recommendations to select and improve the load transfer characteristics and evaluation parameters of the load transfer mechanism in asphalt mixtures.
2. Definitions and Test Methods for Load Transfer Mechanism
2.1. Definition
2.2. Test Methods and Comparative Evaluation
3. Characterization of Load Transfer Mechanism
3.1. Contact Characteristics
3.2. Contact Force Characteristics
3.3. Force Chain Characteristics
3.4. Comparison of Different Indicators
4. Load Transfer Mechanism of Asphalt Mixture under Different Loading Conditions
4.1. Load Transfer Mechanism in the Compaction Process
4.2. Load Transfer Mechanism under Different Loading Conditions
5. Conclusions
6. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Yao, D.; Qian, G.; Zhu, X.; Shi, Z.; Zhang, C.; Li, P. Review on Digital Twin Model of Asphalt Mixture Performance Based on Mesostructure Characteristics. China J. Highw. Transp. 2022, 1–38. Available online: http://kns.cnki.net/kcms/detail/61.1313.U.20220909.1520.004.html (accessed on 1 January 2023).
- Jin, C.; Zhang, W.; Liu, P.; Yang, X.; Oeser, M. Morphological Simplification of Asphaltic Mixture Components for Micromechanical Simulation Using Finite Element Method. Comput. Aided Civ. Inf. 2021, 36, 1435–1452. [Google Scholar] [CrossRef]
- Jin, C.; Wan, X.; Yang, X.; Liu, P.; Oeser, M. Three-Dimensional Characterization and Evaluation of Aggregate Skeleton of Asphalt Mixture Based on Force-Chain Analysis. J. Eng. Mech. 2021, 147, 04020147. [Google Scholar] [CrossRef]
- Jin, C.; Wan, X.; Liu, P.; Yang, X.; Oeser, M. Stability Prediction for Asphalt Mixture Based on Evolutional Characterization of Aggregate Skeleton. Comput. Aided Civ. Inf. 2021, 36, 1453–1466. [Google Scholar] [CrossRef]
- Wang, S.; Miao, Y.; Wang, L. Investigation of the Force Evolution in Aggregate Blend Compaction Process and the Effect of Elongated and Flat Particles Using Dem. Constr. Build. Mater. 2020, 258, 119674. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Li, F.; Wang, C. Force Chains in Top Coal Caving Mining. Int. J. Rock Mech. Min. 2020, 127, 104218. [Google Scholar] [CrossRef]
- Miao, Y.; Yu, W.; Hou, Y.; Guo, L.; Wang, L. Investigating the Functions of Particles in Packed Aggregate Blend Using a Discrete Element Method. Materials 2019, 12, 556. [Google Scholar] [CrossRef]
- Shi, L.; Yang, Z.; Wang, D.; Qin, X.; Xiao, X.; Julius, M.K. Gradual Meso-Structural Response Behaviour of Characteristics of Asphalt Mixture Main Skeleton Subjected to Load. Appl. Sci. 2019, 9, 2425. [Google Scholar] [CrossRef]
- Chang, M.; Pei, J.; Huang, P.; Xiong, R. Analysis on the Distribution Probability of Force Chain of Contact Force Among Granular Matter Considering Gradation. Mater. Rep. 2018, 32, 3618–3622. [Google Scholar] [CrossRef]
- Abbas, A.; Masad, E.; Papagiannakis, T.; Harman, T. Micromechanical Modeling of the Viscoelastic Behavior of Asphalt Mixtures Using the Discrete-Element Method. Int. J. Geomech. 2007, 7, 131–139. [Google Scholar] [CrossRef]
- Apuzzo, M.D.; Evangelisti, A.; Nicolosi, V. Preliminary Investigation on a Numerical Approach for the Evaluation of Road Macrotexture. In Proceedings of the 17th International Conference on Computational Science and Applications (ICCSA 2017), Trieste, Italy, 3–6 July 2017. [Google Scholar]
- D’Apuzzo, M.; Evangelisti, A.; Santilli, D.; Nicolosi, V. 3D Simulations of Two-Component Mixes for the Prediction of Multi-Component Mixtures’ Macrotexture: Intermediate Outcomes; Springer International Publishing: Cham, Switzerland, 2021; pp. 495–511. [Google Scholar]
- Liu, G.; Han, D.; Jia, Y.; Zhao, Y. Asphalt Mixture Skeleton Main Force Chains Composition Criteria and Characteristics Evaluation Based on Discrete Element Methods. Constr. Build. Mater. 2022, 323, 126313. [Google Scholar] [CrossRef]
- Zhang, H.; Anupam, K.; Scarpas, A.; Kasbergen, C.; Erkens, S. Effect of Stone-On-Stone Contact on Porous Asphalt Mixes: Micromechanical Analysis. Int. J. Pavement Eng. 2020, 21, 990–1001. [Google Scholar] [CrossRef]
- Wang, X.; Gu, X.; Jiang, J.; Deng, H. Experimental Analysis of Skeleton Strength of Porous Asphalt Mixtures. Constr. Build. Mater. 2018, 171, 13–21. [Google Scholar] [CrossRef]
- Tan, Z.; Leng, Z.; Jiang, J.; Cao, P.; Jelagin, D.; Li, G.; Sreeram, A. Numerical Study of the Aggregate Contact Effect on the Complex Modulus of Asphalt Concrete. Mater. Des. 2022, 213, 110342. [Google Scholar] [CrossRef]
- Shi, L.; Xiao, X.; Wang, X.; Liang, H.; Wang, D. Mesostructural Characteristics and Evaluation of Asphalt Mixture Contact Chain Complex Networks. Constr. Build. Mater. 2022, 340, 127753. [Google Scholar] [CrossRef]
- Jin, C.; Zou, F.; Yang, X.; Liu, K.; Liu, P.; Oeser, M. Three-Dimensional Quantification and Classification Approach for Angularity and Surface Texture Based on Surface Triangulation of Reconstructed Aggregates. Constr. Build. Mater. 2020, 246, 118120. [Google Scholar] [CrossRef]
- Shi, L.; Wang, D.; Xiao, X.; Qin, X. Meso-Structural Characteristics of Asphalt Mixture Main Skeleton Based on Meso-Scale Analysis. Constr. Build. Mater. 2020, 232, 117263. [Google Scholar] [CrossRef]
- Li, P.; Su, J.; Ma, S.; Dong, H. Effect of Aggregate Contact Condition on Skeleton Stability in Asphalt Mixture. Int. J. Pavement Eng. 2020, 21, 196–202. [Google Scholar] [CrossRef]
- Jiang, J.; Ni, F.; Gao, L.; Yao, L. Effect of the Contact Structure Characteristics on Rutting Performance in Asphalt Mixtures Using 2D Imaging Analysis. Constr. Build. Mater. 2017, 136, 426–435. [Google Scholar] [CrossRef]
- Chang, M.; Pei, J.; Zhang, J.; Xing, X.; Xu, S.; Xiong, R.; Sun, J. Quantitative Distribution Characteristics of Force Chains for Asphalt Mixtures with Three Skeleton Structures Using Discrete Element Method. Granul. Matter 2020, 22, 87. [Google Scholar] [CrossRef]
- Chang, M.; Huang, P.; Pei, J.; Zhang, J.; Zheng, B.; Hamzah, M.O. Quantitative Analysis on Force Chain of Asphalt Mixture Under Haversine Loading. Adv. Mater. Sci. Eng. 2017, 2017, 7128602. [Google Scholar] [CrossRef] [Green Version]
- Hurley, R.; Zhai, C. Challenges and Opportunities in Measuring Time-Resolved Force Chain Evolution in 3D Granular Materials. Pap. Phys. 2022, 14, 140003. [Google Scholar] [CrossRef]
- Fu, L.; Zhou, S.; Guo, P.; Wang, S.; Luo, Z. Induced Force Chain Anisotropy of Cohesionless Granular Materials During Biaxial Compression. Granul. Matter. 2019, 21, 52. [Google Scholar] [CrossRef]
- Peters, J.F.; Muthuswamy, M.; Wibowo, J.; Tordesillas, A. Characterization of Force Chains in Granular Material. Phys. Rev. E 2005, 72, 041307. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Tan, J.; Zhang, N.; Chen, B. Relation Between Force Chain Quantitative Characteristics and Side Wall Friction Behaviour During Ferrous Powder Compaction. Granul. Matter 2022, 24, 86. [Google Scholar] [CrossRef]
- Liu, G.; Han, D.; Zhao, Y.; Zhang, J. Effects of Asphalt Mixture Structure Types on Force Chains Characteristics Based on Computational Granular Mechanics. Int. J. Pavement Eng. 2022, 23, 1008–1024. [Google Scholar] [CrossRef]
- Tordesillas, A.; Walker, D.M.; Lin, Q. Force Cycles and Force Chains. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2010, 81 Pt 1, 011302. [Google Scholar] [CrossRef]
- Qian, G.; Hu, K.; Li, J.; Bai, X.; Li, N. Compaction Process Tracking for Asphalt Mixture Using Discrete Element Method. Constr. Build. Mater. 2020, 235, 117478. [Google Scholar] [CrossRef]
- Liu, W.; Gong, X.; Gao, Y.; Li, L. Microscopic Characteristics of Field Compaction of Asphalt Mixture Using Discrete Element Method. J. Test. Eval. 2019, 47, 20180633. [Google Scholar] [CrossRef]
- Dan, H.; Yang, D.; Liu, X.; Peng, A.; Zhang, Z. Experimental Investigation on Dynamic Response of Asphalt Pavement Using Smartrock Sensor Under Vibrating Compaction Loading. Constr. Build. Mater. 2020, 247, 118592. [Google Scholar] [CrossRef]
- Dan, H.; Yang, D.; Zhao, L.; Wang, S.; Zhang, Z. Meso-Scale Study on Compaction Characteristics of Asphalt Mixtures in Superpave Gyratory Compaction Using Smartrock Sensors. Constr. Build. Mater. 2020, 262, 120874. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, D.; Zhang, Y.; Hong, J. Micromechanical Response of Aggregate Skeleton within Asphalt Mixture Based on Virtual Simulation of Wheel Tracking Test. Constr. Build. Mater. 2016, 111, 153–163. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Wang, L.; Wu, J.; Huang, X. Micromechanical Characteristics of Aggregate Particles in Asphalt Mixtures. Constr. Build. Mater. 2015, 91, 80–85. [Google Scholar] [CrossRef]
- Xue, B.; Pei, J.; Zhou, B.; Zhang, J.; Li, R.; Guo, F. Using Random Heterogeneous Dem Model to Simulate the Scb Fracture Behavior of Asphalt Concrete. Constr. Build. Mater. 2020, 236, 117580. [Google Scholar] [CrossRef]
- Shi, L.; Wang, D.; Wang, J.; Jiang, Z.; Liang, H.; Qin, X.; Hao, W.; Wang, H. A New Method for Designing Dense Skeleton Asphalt Mixture Based on Meso Parameter. Adv. Civ. Eng. 2020, 2020, 3841291. [Google Scholar] [CrossRef]
- Wang, S.; Miao, Y.; Wang, L. Effect of Grain Size Composition on Mechanical Performance Requirement for Particles in Aggregate Blend Based on Photoelastic Method. Constr. Build. Mater. 2022, 363, 129808. [Google Scholar] [CrossRef]
- Li, F.; Yang, L.; Wang, J.; Wang, C. A Quantitative Extraction Method of Force Chains for Composite Particles in a Photoelastic Experiment. Chin. J. Eng. 2018, 40, 302–312. [Google Scholar] [CrossRef]
- Daniels, K.E.; Kollmer, J.E.; Puckett, J.G. Photoelastic Force Measurements in Granular Materials. Rev. Sci. Instrum. 2017, 88, 051808. [Google Scholar] [CrossRef]
- Naga, S.; Aroon, S. Investigating the Role of Aggregate Structure in Asphalt Pavements. In Proceedings of the International Center for Aggregates Research 8th Annual Symposium: Aggregates-Asphalt Concrete, Bases and Fines, Denver, CO, USA, 12–14 April 2000. [Google Scholar]
- Pei, Z.; Lou, K.; Kong, H.; Wu, B.; Wu, X.; Xiao, P.; Qi, Y. Effects of Fiber Diameter on Crack Resistance of Asphalt Mixtures Reinforced by Basalt Fibers Based on Digital Image Correlation Technology. Materials 2021, 14, 7426. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, K.; Hou, M.; Zhang, L. Studying the Strain Field Distribution of Asphalt Mixture with the Digital Speckle Correlation Method. Road Mater. Pavement Des. 2014, 15, 90–101. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H. A New Method for Compaction Quality Evaluation of Asphalt Mixtures with the Intelligent Aggregate (Ia). Materials 2021, 14, 2422. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, Z.; Geng, D.; Xie, S.; Wang, T. Experimental and Numerical Analysis on Mesoscale Mechanical Behavior of Coarse Aggregates in the Asphalt Mixture During Gyratory Compaction. Processes 2022, 10, 47. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z. Study on Migratory Behavior of Aggregate in Asphalt Mixture Based on the Intelligent Acquisition System of Aggregate Attitude Data. Sustainability 2021, 13, 3053. [Google Scholar] [CrossRef]
- Mueth, D.M.; Jaeger, H.M.; Nagel, S.R. Force Distribution in a Granular Medium. Phys. Rev. E 1998, 57, 3164–3169. [Google Scholar] [CrossRef]
- Li, J.; Li, P.; Su, J.; Xue, Y.; Rao, W. Effect of Aggregate Contact Characteristics on Densification Properties of Asphalt Mixture. Constr. Build. Mater. 2019, 204, 691–702. [Google Scholar] [CrossRef]
- Sanfratello, L.; Fukushima, E.; Behringer, R.P. Using Mr Elastography to Image the 3D Force Chain Structure of a Quasi-Static Granular Assembly. Granul. Matter 2008, 11, 1–6. [Google Scholar] [CrossRef]
- Huang, P.; Zhao, Y.; Niu, Y.; Ren, X.; Chang, M.; Sun, Y. Mesoscopic Finite Element Method of the Effective Thermal Conductivity of Concrete with Arbitrary Gradation. Adv. Mater. Sci. Eng. 2018, 2018, 2352864. [Google Scholar] [CrossRef]
- Han, D.; Liu, G.; Xi, Y.; Zhao, Y.; Tang, D. Performance Prediction of Asphalt Mixture Based on Dynamic Reconstruction of Heterogeneous Microstructure. Powder Technol. 2021, 392, 356–366. [Google Scholar] [CrossRef]
- Yao, H.; Xu, M.; Liu, J.; Liu, Y.; Ji, J.; You, Z. Literature Review on the Discrete Element Method in Asphalt Mixtures. Front. Mater. 2022, 9, 236. [Google Scholar] [CrossRef]
- Peng, Y.; Bao, J. Comparative Study of 2D and 3D Micromechanical Discrete Element Modeling of Indirect Tensile Tests for Asphalt Mixtures. Int. J. Geomech. 2018, 18, 04018046. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Y.; Cui, P.; Ma, T.; Kuang, D. Effect of Aggregate Morphologies and Compaction Methods on the Skeleton Structures in Asphalt Mixtures. Constr. Build. Mater. 2020, 263, 120220. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; Bu, Y.; You, Z.; Hasan, M.R.M.; Irfan, M. Effects of Coarse Aggregate Angularity on the Microstructure of Asphalt Mixture. Constr. Build. Mater. 2018, 183, 472–484. [Google Scholar] [CrossRef]
- Coenen, A.R.; Kutay, M.E.; Sefidmazgi, N.R.; Bahia, H.U. Aggregate Structure Characterisation of Asphalt Mixtures Using Two-Dimensional Image Analysis. Road Mater. Pavement Des. 2012, 13, 433–454. [Google Scholar] [CrossRef]
- Sefidmazgi, N.R.; Tashman, L.; Bahia, H. Internal Structure Characterization of Asphalt Mixtures for Rutting Performance Using Imaging Analysis. Road Mater. Pavement Des. 2012, 13 (Suppl. S1), 21–37. [Google Scholar] [CrossRef]
- Jiang, J.; Ni, F.; Dong, Q.; Yao, L.; Ma, X. Investigation of the Internal Structure Change of Two-Layer Asphalt Mixtures During the Wheel Tracking Test Based on 2D Image Analysis. Constr. Build. Mater. 2019, 209, 66–76. [Google Scholar] [CrossRef]
- Khalilitehrani, M.; Sasic, S.; Rasmuson, A. Characterization of Force Networks in a Dense High-Shear System. Particuology 2018, 38, 215–221. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, Y. Statistics of Contact Force Network in Dense Granular Matter. Particuology 2010, 8, 133–140. [Google Scholar] [CrossRef]
- Kutay, M.E.; Arambula, E.; Gibson, N.; Youtcheff, J. Three-Dimensional Image Processing Methods to Identify and Characterise Aggregates in Compacted Asphalt Mixtures. Int. J. Pavement Eng. 2010, 11, 511–528. [Google Scholar] [CrossRef]
- Zhu, X.; Qian, G.; Yu, H.; Yao, D.; Shi, C.; Zhang, C. Evaluation of Coarse Aggregate Movement and Contact Unbalanced Force During Asphalt Mixture Compaction Process Based on Discrete Element Method. Constr. Build. Mater. 2022, 328, 127004. [Google Scholar] [CrossRef]
- Giusti, C.; Papadopoulos, L.; Owens, E.T.; Daniels, K.E.; Bassett, D.S. Topological and Geometric Measurements of Force-Chain Structure. Phys. Rev. E 2016, 94, 032909. [Google Scholar] [CrossRef]
- Sun, Q.; Jin, F.; Wang, G.; Zhang, G. Force Chains in a Uniaxially Compressed Static Granular Matter in 2D. Acta Phydica Sin. 2010, 59, 30–37. [Google Scholar]
- Sun, Q.; Xin, H.; Liu, J.; Jin, F. Skeleton and Force Chain Network in Static Granular Material. Rock Soil Mech. 2009, 30 (Suppl. S1), 83–87. [Google Scholar] [CrossRef]
- Cai, X.; Zhu, F.; Wu, K.; Wan, C. Steady-State Parameters and Model for Asphalt Mixture Skeletons. China J. Highw. Transp. 2019, 32, 39–46+96. [Google Scholar] [CrossRef]
- Cai, X.; Wu, K.; Huang, W. Study on the Optimal Compaction Effort of Asphalt Mixture Based on the Distribution of Contact Points of Coarse Aggregates. Road Mater. Pavement Des. 2021, 22, 1594–1615. [Google Scholar] [CrossRef]
- Cai, X.; Wu, K.H.; Huang, W.K.; Wan, C. Study on the Correlation Between Aggregate Skeleton Characteristics and Rutting Performance of Asphalt Mixture. Constr. Build. Mater. 2018, 179, 294–301. [Google Scholar] [CrossRef]
- Xing, C.; Xu, H.; Tan, Y.; Liu, X.; Ye, Q. Mesostructured Property of Aggregate Disruption in Asphalt Mixture Based on Digital Image Processing Method. Constr. Build. Mater. 2019, 200, 781–789. [Google Scholar] [CrossRef]
- Shi, L.; Wang, D. Evaluation Indexes of Asphalt Mixture Main Skeleton Based on Digital Image Processing. China J. Highw. Transp. 2017, 30, 52–58+73. [Google Scholar]
- Shi, L.; Wang, D.; Cai, X.; Wu, Z. Distribution Characteristics of Coarse Aggregate Contacts Based on Digital Image Processing Technique. China J. Highw. Transp. 2014, 27, 23–31. [Google Scholar] [CrossRef]
- Newman, M.E.J. The Structure and Function of Networks. Comput. Phys. Commun. 2002, 147, 40–45. [Google Scholar] [CrossRef]
- Liu, P.; Hu, J.; Canon Falla, G.; Wang, D.; Leischner, S.; Oeser, M. Primary Investigation on the Relationship Between Microstructural Characteristics and the Mechanical Performance of Asphalt Mixtures with Different Compaction Degrees. Constr. Build. Mater. 2019, 223, 784–793. [Google Scholar] [CrossRef]
- Gong, F.; Liu, Y.; Zhou, X.; You, Z. Lab Assessment and Discrete Element Modeling of Asphalt Mixture During Compaction with Elongated and Flat Coarse Aggregates. Constr. Build. Mater. 2018, 182, 573–579. [Google Scholar] [CrossRef]
- Ding, X.; Ma, T.; Gao, W. Morphological Characterization and Mechanical Analysis for Coarse Aggregate Skeleton of Asphalt Mixture Based on Discrete-Element Modeling. Constr. Build. Mater. 2017, 154, 1048–1061. [Google Scholar] [CrossRef]
- Yuan, G.; Li, X.; Hao, P.; Li, D.; Pan, J.; Li, A. Application of Flat-Joint Contact Model for Uniaxial Compression Simulation of Large Stone Porous Asphalt Mixes. Constr. Build. Mater. 2020, 238, 117695. [Google Scholar] [CrossRef]
- Liu, W.; Gao, Y.; Huang, X.; Li, L. Investigation of Motion of Coarse Aggregates in Asphalt Mixture Based on Virtual Simulation of Compaction Test. Int. J. Pavement Eng. 2020, 21, 144–156. [Google Scholar] [CrossRef]
- Gong, F.; Zhou, X.; You, Z.; Liu, Y.; Chen, S. Using Discrete Element Models to Track Movement of Coarse Aggregates During Compaction of Asphalt Mixture. Constr. Build. Mater. 2018, 189, 338–351. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, X.; Onifade, I.; Huang, X.; Lytton, R.L.; Birgisson, B. Mechanical Evaluation of Aggregate Gradation to Characterize Load Carrying Capacity and Rutting Resistance of Asphalt Mixtures. Constr. Build. Mater. 2019, 205, 499–510. [Google Scholar] [CrossRef]
- Jin, C.; Cheng, Y.; Yang, X.; Li, S.; Hu, J.; Lan, G. Adaptive Classification of Aggregate Morphologies Using Clustering for Investigation of Correlation with Contact Characteristics of Aggregates. Constr. Build. Mater. 2022, 349, 128802. [Google Scholar] [CrossRef]
- Chen, Y.; Zhenxia, L.I. Meso-Structure of Crumb Rubber Asphalt Mixture Based on Discrete Element Method. J. Harbin Inst. Technol. 2013, 45, 116–121. [Google Scholar]
- Liu, G.; Pan, Y.; Zhao, Y.; Zhou, J.; Li, J.; Han, D. Research on Asphalt Mixture Force Chain Identification Criteria Based on Computational Granular Mechanics. Can. J. Civil Eng. 2021, 48, 763–775. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, J.; Miao, T. Force Distribution in Three-Dimensional Granular Piles. J. Lanzhou Univ. (Nat. Sci.) 2007, 43, 134–139. [Google Scholar] [CrossRef]
- Liu, G.; Han, D.; Zhu, C.; Wang, F.; Zhao, Y. Asphalt-Mixture Force Chains Length Distribution and Skeleton Composition Investigation Based on Computational Granular Mechanics. J. Mater. Civil Eng. 2021, 33, 04021033. [Google Scholar] [CrossRef]
- Liu, G.; Han, D.; Zhao, Y. Quantitative Investigation of Aggregate Skeleton Force Chains of Asphalt Mixtures Based on Computational Granular Mechanics. Adv. Civ. Eng. 2020, 2020, 2196503. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, J. Experiment on and Analysis of Force Transfer of Axial Load in Granular Packs. J. Lanzhou Univ. Technol. 2006, 32, 117–121. [Google Scholar] [CrossRef]
- Chang, M.; Huang, P.; Pei, J.; Zhang, J. Quantitative Analysis on Evolution and Distribution of Force Chain for Asphalt Mixture Using Discrete Element Method. Mater. Rep. 2017, 31, 155–159. [Google Scholar]
- Sun, Q.; Wang, G.; Hu, K. Some Open Problems in Granular Matter Mechanics. Prog. Nat. Sci. 2009, 19, 523–529. [Google Scholar] [CrossRef]
- Dantu, P. A Contribution to the Mechanical and Geometrical Study of Non-Conhesive Masses. In Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, London, UK, 12–24 August 1957; pp. 144–148. [Google Scholar]
- Edwards, S.F.; Oakeshott, R.B.S. The Transmission of Stress in an Aggregate. Phys. D Nonlinear Phenom. 1989, 38, 88–92. [Google Scholar] [CrossRef]
- Bouchaud, J.P.; Cates, M.E.; Claudin, P. Stress Distribution in Granular Media and Nonlinear Wave Equation. J. Phys. I 1995, 5, 639–656. [Google Scholar] [CrossRef]
- He, L.; Pan, G.; He, Z.; Luo, Y.; Pei, Y. A Photo_Elastic Study of Crack Caused by Thermal Stress in Asphalt Concrete Pavament. J. South China Univ. Technol. (Nat. Sci. Ed.) 2001, 6, 68–71. [Google Scholar] [CrossRef]
- Wang, W.J.; Kong, X.Z.; Zhu, Z.G. Friction and Relative Energy Dissipation in Sheared Granular Materials. Phys Rev E Stat. Nonlin Soft Matter Phys. 2007, 75 Pt 2, 041302. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, J.; Yu, S.; Zhang, X.; Liu, K. Investigation of the Stress Transmission Characterization in High Velocity Powder Compaction Based on Mechanics of Granular Materials. Chin. J. Appl. Mech. 2018, 35, 154–160+234. [Google Scholar]
- Zhang, W.; Zhou, J.; Yu, S.; Zhang, X.; Liu, K. Quantitative Investigation on Force Chains of Metal Powder in High Velocity Compaction by Using Discrete Element Method. J. Mech. Eng. 2018, 54, 85–92. [Google Scholar] [CrossRef]
- Sun, Q.; Jin, F.; Liu, J.; Zhang, G. Understanding Force Chains in Dense Granular Materials. Int. J. Mod. Phys. B 2010, 24, 1005578. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Z.; Li, L.; You, Z.; Chen, Y. Three-Dimensional Modeling and Simulation of Asphalt Concrete Mixtures Based on X-Ray Ct Microstructure Images. J. Traffic Trans. Eng.(Engl. Ed.) 2014, 1, 55–61. [Google Scholar] [CrossRef]
- Shi, L.; Wang, D.; Xu, C.; Liang, H. Investigation Into Meso Performance of Asphalt Mixture Skeleton Based on Discrete Element Method. J. South China Univ. Technol. (Nat. Sci. Ed.) 2015, 43, 50–56. [Google Scholar]
- Feng, H.; Pettinari, M.; Hofko, B.; Stang, H. Study of the Internal Mechanical Response of an Asphalt Mixture by 3-D Discrete Element Modeling. Constr. Build. Mater. 2015, 77, 187–196. [Google Scholar] [CrossRef]
- Si, C.; Zhou, X.; You, Z.; He, Y.; Chen, E.; Zhang, R. Micro-Mechanical Analysis of High Modulus Asphalt Concrete Pavement. Constr. Build. Mater. 2019, 220, 128–141. [Google Scholar] [CrossRef]
- Peng, Y.; Ying, L.; Kamel, M.M.A.; Wang, Y. Mesoscale Fracture Analysis of Recycled Aggregate Concrete Based on Digital Image Processing Technique. Struct. Concr. J. FIB 2021, 22 (Suppl. S1), E33–E47. [Google Scholar] [CrossRef]
- Xue, B.; Xu, J.; Pei, J.; Zhang, J.; Li, R. Investigation on the Micromechanical Response of Asphalt Mixture During Permanent Deformation Based on 3D Virtual Wheel Tracking Test. Constr. Build. Mater. 2021, 267, 121031. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, L. Aggregate Distribution Influence on the Indirect Tensile Test of Asphalt Mixtures Using the Discrete Element Method. Int. J. Pavement Eng. 2017, 18, 668–681. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, L.J. Micromechanics-Based Analysis of the Effect of Aggregate Homogeneity on the Uniaxial Penetration Test of Asphalt Mixtures. J. Mater. Civil Eng. 2016, 28, 04016119. [Google Scholar] [CrossRef]
No. | Method | Main Features | Obtain | Studies |
---|---|---|---|---|
Laboratory test method | ||||
1 | Charge coupled device camera (CCD) or Computed tomography (CT) + DIP | [8] | Contact number; contact chain. | [8,17,37] |
2 | Photoelastic experiment | Contact number; contact chain; force chain. | [38,39,40,41] | |
3 | Digital speckle correlation (DSC) | Strain state. | [42,43] | |
4 | Intelligent aggregate (20 mm) | [44] | Stress at one point. | [44] |
5 | SmartRock | [45] | Change of contact structure; stress at one point. | [33,45] |
6 | Intelligent Attitude Aggregate (IAA). | [46] | Change of contact structure. | [46] |
7 | Indentation test | -- | Contact force. | [9,47] |
8 | Aggregate contact device (ACD) | -- | Contact structure. | [48] |
9 | Magnetic Resonance Elastography (MRE) | -- | Contact structure. | [49] |
Simulation test method | ||||
9 | Discrete element method (DEM) | [5] | Contact number; contact chain; contact force; force chain. | [5,7,28] |
10 | Finite element method (FEM) | [50] | Contact chain; force chain. | [2,3,50,51] |
11 | DIP and numerical simulation | [52] | Contact number; contact chain; contact force; force chain. | [52,53] |
Classification | Schematic Diagram | Indicators | References | |
---|---|---|---|---|
Contact characteristics | Contact number | [37] | 1 | [21,37] |
Contact orientation | 2 3 | |||
Contact angle | -- | 4 | [64] | |
Contact chain | 5 6 | [4] | ||
Contact distance | -- | The minimum distance between one aggregate and its neighboring aggregates | [69] | |
Contact length | -- | 7 | [17] | |
Contact force characteristics | Contact force | [5] | 8 9 | [5,7] |
Unbalanced contact force | Color line: contact force | 10 | [79] | |
Contact force probability distribution | [23] | 11 | [22,23] | |
Force chain | Force chain number | -- | 12 | [13,28] |
Force chain length | 13 | |||
Force chain alignment coefficient | 14 | |||
Force chain direction angle | -- | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yu, W.; Miao, Y.; Wang, L. Review on Load Transfer Mechanisms of Asphalt Mixture Meso-Structure. Materials 2023, 16, 1280. https://doi.org/10.3390/ma16031280
Wang S, Yu W, Miao Y, Wang L. Review on Load Transfer Mechanisms of Asphalt Mixture Meso-Structure. Materials. 2023; 16(3):1280. https://doi.org/10.3390/ma16031280
Chicago/Turabian StyleWang, Sudi, Weixiao Yu, Yinghao Miao, and Linbing Wang. 2023. "Review on Load Transfer Mechanisms of Asphalt Mixture Meso-Structure" Materials 16, no. 3: 1280. https://doi.org/10.3390/ma16031280
APA StyleWang, S., Yu, W., Miao, Y., & Wang, L. (2023). Review on Load Transfer Mechanisms of Asphalt Mixture Meso-Structure. Materials, 16(3), 1280. https://doi.org/10.3390/ma16031280