DFT Study on the Enhancement of Isobaric Specific Heat of GaN and InN Nanosheets for Use as Nanofluids in Solar Energy Plants
Abstract
:1. Introduction
2. Computational Framework
3. Results and Discussion
3.1. GaN-DDA and InN-DDA Systems
Geometrical and Electronic Analysis
3.2. Isobaric Specific Heat for GaN-DDA and InN-DDA Systems
4. Conclusions
- GaN and InN sheets interact with DDA as surfactant, preferably with the terminal N of the surfactant placed over the Ga and In atoms of the sheet.
- The highest value of isobaric specific heat corresponds to the systems with DO used as representative of a commercial HTF.
- GaN and InN sheets can be proposed to be used in CSPs.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kalogirou, S.A. Solar thermal collectors and applications. Prog. Energy Combust. Sci. 2004, 30, 231–295. [Google Scholar] [CrossRef]
- Kalogirou, S.A.; Karellas, S.; Braimakis, K.; Stanciu, C.; Badescu, V. Exergy analysis of solar thermal collectors and processes. Prog. Energy Combust. Sci. 2016, 56, 106–137. [Google Scholar] [CrossRef]
- Fernandez-Garcia, A.; Zarza, E.; Valenzuela, L.; Perez, M. Parabolic-trough solar collectors and their applications. Renew. Sustain. Energy Rev. 2010, 14, 1695–1721. [Google Scholar] [CrossRef]
- Desideri, U.; Zepparelli, F.; Morettini, V.; Garroni, E. Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations. Appl. Energy 2013, 102, 765–784. [Google Scholar] [CrossRef]
- Sanchez-Coronilla, A.; Martin, E.I.; Navas, J.; Aguilar, T.; Gomez-Villarejo, R.; Alcantara, R.; Pinero, J.C.; Fernandez-Lorenzo, C. Experimental and theoretical analysis of NiO nanofluids in presence of surfactants. J. Mol. Liq. 2018, 252, 211–217. [Google Scholar] [CrossRef]
- Sanchez-Coronilla, A.; Navas, J.; Aguilar, T.; Martin, E.I.; Gallardo, J.J.; Gomez-Villarejo, R.; Carrillo-Berdugo, I.; Alcantara, R.; Fernandez-Lorenzo, C.; Martin-Calleja, J. The Role of Surfactants in the Stability of NiO Nanofluids: An Experimental and DFT Study. Chemphyschem 2017, 18, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Yasinskiy, A.; Navas, J.; Aguilar, T.; Alcantara, R.; Gallardo, J.J.; Sanchez-Coronilla, A.; Martin, E.I.; De Los Santos, D.; Fernandez-Lorenzo, C. Dramatically enhanced thermal properties for TiO2-based nanofluids for being used as heat transfer fluids in concentrating solar power plants. Renew. Energy 2018, 119, 809–819. [Google Scholar] [CrossRef]
- Eastman, J.A.; Phillpot, S.R.; Choi, S.U.S.; Keblinski, P. Thermal transport in nanofluids. Annu. Rev. Mater. Res. 2004, 34, 219–246. [Google Scholar] [CrossRef]
- Hussein, O.A.; Habib, K.; Muhsan, A.S.; Saidur, R.; Alawi, O.A.; Ibrahim, T.K. Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Sol. Energy 2020, 204, 208–222. [Google Scholar] [CrossRef]
- Martin, E.I.; Sanchez-Coronilla, A.; Navas, J.; Gomez-Villarejo, R.; Gallardo, J.J.; Alcantara, R.; Fernandez-Lorenzo, C. Unraveling the role of the base fluid arrangement in metal-nanofluids used to enhance heat transfer in concentrating solar power plants. J. Mol. Liq. 2018, 252, 271–278. [Google Scholar] [CrossRef]
- Martin, E.I.; Sanchez-Coronilla, A.; Navas, J.; Gomez-Villarejo, R.; Martinez-Merino, P.; Alcantara, R.; Fernandez-Lorenzo, C. Revealing at the molecular level the role of the surfactant in the enhancement of the thermal properties of the gold nanofluid system used for concentrating solar power. Phys. Chem. Chem. Phys. 2018, 20, 2421–2430. [Google Scholar] [CrossRef]
- Navas, J.; Sanchez-Coronilla, A.; Martin, E.I.; Teruel, M.; Gallardo, J.J.; Aguilar, T.; Gomez-Villarejo, R.; Alcantara, R.; Fernandez-Lorenzo, C.; Pinero, J.C.; et al. On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: An experimental and molecular dynamics study. Nano Energy 2016, 27, 213–224. [Google Scholar] [CrossRef]
- Jamshed, W.; Eid, M.R.; Al-Hossainy, A.F.; Raizah, Z.; El Din, E.M.T.; Sajid, T. Experimental and TDDFT materials simulation of thermal characteristics and entropy optimized of Williamson Cu-methanol and Al2O3-methanol nanofluid flowing through solar collector. Sci. Rep. 2022, 12, 18130. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Villarejo, R.; Martin, E.I.; Sanchez-Coronilla, A.; Aguilar, T.; Gallardo, J.J.; Martinez-Merino, P.; Carrillo-Berdugo, I.; Alcantara, R.; Fernandez-Lorenzo, C.; Navas, J. Towards the improvement of the global efficiency of concentrating solar power plants by using Pt-based nanofluids: The internal molecular structure effect. Appl. Energy 2018, 228, 2262–2274. [Google Scholar] [CrossRef]
- Aguilar, T.; Navas, J.; Sanchez-Coronilla, A.; Martin, E.I.; Gallardo, J.J.; Martinez-Merino, P.; Gomez-Villarejo, R.; Pinero, J.C.; Alcantara, R.; Fernandez-Lorenzo, C. Investigation of enhanced thermal properties in NiO-based nanofluids for concentrating solar power applications: A molecular dynamics and experimental analysis. Appl. Energy 2018, 211, 677–688. [Google Scholar] [CrossRef]
- Wahab, A.; Hassan, A.; Qasim, M.A.; Ali, H.M.; Babar, H.; Sajid, M.U. Solar energy systems—Potential of nanofluids. J. Mol. Liq. 2019, 289, 111049. [Google Scholar] [CrossRef]
- Aguilar, T.; Sani, E.; Mercatelli, L.; Carrillo-Berdugo, I.; Torres, E.; Navas, J. Exfoliated graphene oxide-based nanofluids with enhanced thermal and optical properties for solar collectors in concentrating solar power. J. Mol. Liq. 2020, 306, 112862. [Google Scholar] [CrossRef]
- Hajjar, Z.; Rashidi, A.M.; Ghozatloo, A. Enhanced thermal conductivities of graphene oxide nanofluids. Int. Commun. Heat Mass Transf. 2014, 57, 128–131. [Google Scholar] [CrossRef]
- Martinez-Merino, P.; Midgley, S.D.; Martin, E.I.; Estelle, P.; Alcantara, R.; Sanchez-Coronilla, A.; Grau-Crespo, R.; Navas, J. Novel WS2-Based Nanofluids for Concentrating Solar Power: Performance Characterization and Molecular-Level Insights. ACS Appl. Mater. Interfaces 2020, 12, 5793–5804. [Google Scholar] [CrossRef]
- Martinez-Merino, P.; Sanchez-Coronilla, A.; Alcantara, R.; Martin, E.I.; Navas, J. Insights into the stability and thermal properties of WSe2-based nanofluids for concentrating solar power prepared by liquid phase exfoliation. J. Mol. Liq. 2020, 319, 114333. [Google Scholar] [CrossRef]
- Navas, J.; Martinez-Merino, P.; Sanchez-Coronilla, A.; Gallardo, J.J.; Alcantara, R.; Martin, E.I.; Pinero, J.C.; Leon, J.R.; Aguilar, T.; Toledo, J.H.; et al. MoS2 nanosheets vs. nanowires: Preparation and a theoretical study of highly stable and efficient nanofluids for concentrating solar power. J. Mater. Chem. A 2018, 6, 14919–14929. [Google Scholar] [CrossRef]
- Eid, M.R.; Al-Hossainy, A.F. High-performance nanofluid synthesis and DFT-TDDFT study of graphene nanosheets along bent surface for enhanced oil-recovery implementations. Case Stud. Eng. 2021, 25, 100983. [Google Scholar] [CrossRef]
- Gomez-Villarejo, R.; Estelle, P.; Navas, J. Boron nitride nanotubes-based nanofluids with enhanced thermal properties for use as heat transfer fluids in solar thermal applications. Sol. Energy Mater. Sol. Cells 2020, 205, 110266. [Google Scholar] [CrossRef]
- Zyla, G.; Fal, J.; Traciak, J.; Gizowska, M.; Perkowski, K. Huge thermal conductivity enhancement in boron nitride—ethylene glycol nanofluids. Mater. Chem. Phys. 2016, 180, 250–255. [Google Scholar] [CrossRef]
- Lu, H.; Schaff, W.J.; Eastman, L.F. Surface chemical modification of InN for sensor applications. J. Appl. Phys. 2004, 96, 3577–3579. [Google Scholar] [CrossRef]
- Yong, Y.L.; Cui, H.L.; Zhou, Q.X.; Su, X.Y.; Kuang, Y.M.; Li, X.H. Adsorption of gas molecules on a graphitic GaN sheet and its implications for molecule sensors. Rsc Adv. 2017, 7, 51027–51035. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, D.V.P.; Pearce, J.M. Progress in Indium Gallium Nitride Materials for Solar Photovoltaic Energy Conversion. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2013, 44A, 1947–1954. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Mennucci, B.; Cances, E.; Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications. J. Phys. Chem. B 1997, 101, 10506–10517. [Google Scholar] [CrossRef]
- Gristmill, T.A.K. AIMAll (Version 11.08.23) (aim.tkgristmill.com); Todd, A., Ed.; Keith Gristmill Software: Overland Park, KS, USA, 2011. [Google Scholar]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Abinitio molecular-dynamics for liquid-metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Nanotube Modeler. Available online: http://www.jcrystal.com/products/wincnt/ (accessed on 7 November 2022).
- Savin, A.; Becke, A.D.; Flad, J.; Nesper, R.; Preuss, H.; Vonschnering, H.G. A new look at electron localization. Angew. Chem.-Int. Ed. 1991, 30, 409–412. [Google Scholar] [CrossRef]
- Savin, A.; Jepsen, O.; Flad, J.; Andersen, O.K.; Preuss, H.; Vonschnering, H.G. Electron localization in solid-state structures of the elements—the diamond structure. Angew. Chem.-Int. Ed. 1992, 31, 187–188. [Google Scholar] [CrossRef]
- Silvi, B.; Gatti, C. Direct space representation of the metallic bond. J. Phys. Chem. A 2000, 104, 947–953. [Google Scholar] [CrossRef]
- Silvi, B.; Savin, A. Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686. [Google Scholar] [CrossRef]
- Terriberry, T.B.; Cox, D.F.; Bowman, D.A. A tool for the interactive 3D visualization of electronic structure in molecules and solids. Comput. Chem. 2002, 26, 313–319. [Google Scholar] [CrossRef]
- Available online: www.chemcraftprog.com (accessed on 7 November 2022).
- Bader, R.F. Atoms in Molecules—A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Matta, C.F.B. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
Eint/eV | ||
---|---|---|
Position | GaN-DDA | InN-DDA |
1 | −0.704 | −0.655 |
2 | −0.143 | −0.134 |
3 | 0.524 | 1.403 |
4 | 0.866 | 1.142 |
5 | 1.031 | 1.140 |
6 | 0.203 | 0.225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Velarde, F.; Martín, E.I.; Hidalgo Toledo, J.; Sánchez-Coronilla, A. DFT Study on the Enhancement of Isobaric Specific Heat of GaN and InN Nanosheets for Use as Nanofluids in Solar Energy Plants. Materials 2023, 16, 915. https://doi.org/10.3390/ma16030915
Moreno-Velarde F, Martín EI, Hidalgo Toledo J, Sánchez-Coronilla A. DFT Study on the Enhancement of Isobaric Specific Heat of GaN and InN Nanosheets for Use as Nanofluids in Solar Energy Plants. Materials. 2023; 16(3):915. https://doi.org/10.3390/ma16030915
Chicago/Turabian StyleMoreno-Velarde, Francisco, Elisa I. Martín, José Hidalgo Toledo, and Antonio Sánchez-Coronilla. 2023. "DFT Study on the Enhancement of Isobaric Specific Heat of GaN and InN Nanosheets for Use as Nanofluids in Solar Energy Plants" Materials 16, no. 3: 915. https://doi.org/10.3390/ma16030915
APA StyleMoreno-Velarde, F., Martín, E. I., Hidalgo Toledo, J., & Sánchez-Coronilla, A. (2023). DFT Study on the Enhancement of Isobaric Specific Heat of GaN and InN Nanosheets for Use as Nanofluids in Solar Energy Plants. Materials, 16(3), 915. https://doi.org/10.3390/ma16030915