Influencing Mechanism of Titanium-Extracted Tailing Slag on the Strength of CaO Steel Slag Hardened Paste
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Experimental Programmes
2.3. Sample Characterisation
3. Results and Discussion
3.1. Unconfined Compressive Strength of Hardened Pastes
3.2. Phase Change of Hardened Pastes
3.3. FTIR Characteristics of Hardened Pastes
3.4. Micromorphology of Hardened Pastes
4. Conclusions
- (1)
- Following the inclusion of TETS, the strength of hardened pastes is apparently improved, especially the early strength. The strength is enhanced with higher TETS content. The strength of S45T45 and S22.5T67.5 is increased to be equivalent to that of stable cement materials. They can serve as a sub-base for all roads. It is difficult for SS hardened pastes without TETS to meet the service requirements of the base and sub-base of roads.
- (2)
- After adding TETS, the diffraction peaks of calcite and C-S-H in the hardened paste are strengthened. Moreover, there is a diffraction peak of hydrocalumite. The strength-increasing mechanism is primarily attributed to the combined effects of C-S-H gelation, calcite skeleton effect and hydrocalumite filling effect.
- (3)
- When the SS/TETS ratio is equal to or greater than 45:45, prominent Portlandite diffraction peaks appear in hardened pastes. After TETS replaces some SS, the strength of hardened pastes increases without changing the type and content of activators, thus enabling them to meet the strength requirements of pavement base and sub-base for structural materials. In addition to lowering material costs, it consumes abundant SS and TETS. Hardened pastes with different SS/TETS ratios have low carbon, environmentally friendly, energy-saving and economic characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Yan, P.; Wang, D. Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle. J. Clean. Prod. 2017, 156, 50–61. [Google Scholar] [CrossRef]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, recycling, and management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, Q. Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem. Concr. Res. 2021, 140, 106283. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, Q.; Wei, J.; Li, J.; Zhang, P. Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resour. Conserv. Recycl. 2011, 56, 48–55. [Google Scholar] [CrossRef]
- Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. An overview of utilization of steel slag. Procedia Environ. Sci. 2012, 16, 791–801. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yang, J.; Yan, P. Cementitious properties of super-fine steel slag. Powder Technol. 2013, 245, 35–39. [Google Scholar] [CrossRef]
- Yan, P.; Mi, G.; Wang, Q. A comparison of early hydration properties of cement–steel slag binder and cement–limestone powder binder. J. Therm. Anal. Calorim. 2014, 115, 193–200. [Google Scholar] [CrossRef]
- Martins, A.C.P.; de Carvalho, J.M.F.; Costa, L.C.B.; Andrade, H.D.; de Melo, T.V.; Ribeiro, J.C.L.; Pedroti, L.G.; Peixoto, R.A.F. Steel slags in cement-based composites: An ultimate review on characterization, applications and performance. Constr. Build. Mater. 2021, 291, 123265. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, P.; Feng, J. A discussion on improving hydration activity of steel slag by altering its mineral compositions. J. Hazard. Mater. 2011, 186, 1070–1075. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Wei, J.; Zhang, T. Structural characteristics and hydration kinetics of modified steel slag. Cem. Concr. Res. 2011, 41, 324–329. [Google Scholar] [CrossRef]
- Liu, G.; Rong, H.; Wang, J. Valorization of converter steel slag in sustainable mortars by a combined alkali and carbonation activation. J. Clean. Prod. 2022, 370, 133519. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, P. Hydration properties of basic oxygen furnace steel slag. Constr. Build. Mater. 2010, 24, 1134–1140. [Google Scholar] [CrossRef]
- Humbert, P.S.; Castro-Gomes, J. CO2 activated steel slag-based materials: A review. J. Clean. Prod. 2019, 208, 448–457. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Gao, Z. Use of steel slag as a granular material: Volume expansion prediction and usability criteria. J. Hazard. Mater. 2010, 184, 555–560. [Google Scholar] [CrossRef]
- Han, F.; Zhang, Z.; Wang, D.; Yan, P. Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures. Thermochim. Acta 2015, 605, 43–51. [Google Scholar] [CrossRef]
- You, N.; Li, B.; Cao, R.; Shi, J.; Chen, C.; Zhang, Y. The influence of steel slag and ferronickel slag on the properties of alkali-activated slag mortar. Constr. Build. Mater. 2019, 227, 116614. [Google Scholar] [CrossRef]
- Kim, M.S.; Jun, Y.; Lee, C.; Oh, J.E. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem. Concr. Res. 2013, 54, 208–214. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, D.-W.; Li, L.; Wang, J.-X.; Shao, N.-N.; Wang, D.-M. Microstructure and phase evolution of alkali-activated steel slag during early age. Constr. Build. Mater. 2019, 204, 158–165. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Zhuang, S.; He, W. Hydration properties and microstructure characteristics of alkali–activated steel slag. Constr. Build. Mater. 2020, 241, 118141. [Google Scholar] [CrossRef]
- Liu, Y.L.; Su, Y.P.; Xu, G.Q.; Chen, Y.H.; You, G.S. Research Progress on Controlled Low-Strength Materials: Metallurgical Waste Slag as Cementitious Materials. Materials 2022, 15, 727. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Z. Effect of silicate modulus of water glass on the hydration of alkali-activated converter steel slag. J. Therm. Anal. Calorim. 2019, 138, 47–56. [Google Scholar] [CrossRef]
- Du, P.; Zhou, T.; Zhao, P.; Zhou, Z.; Liu, Y.; Cheng, X. Efflorescence Inhibition of Alkali-Activated Steel Slag-Slag Material By Nano SiO2. Ceram. Silikáty 2018, 62, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.-D.; Xi, J.-C.; Li, C.-H.; Jiang, X.-W. Preparation and application of the cement-free steel slag cementitious material. Constr. Build. Mater. 2016, 114, 874–879. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, B.; Su, Y.; He, X.; Wang, Y.; Oh, S. Hydration and Compressive Strength of Activated Blast-Furnace Slag-Steel Slag with Na2CO3. Materials 2022, 15, 4375. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Zhu, L.; Hu, D. The Mechanical and Erosion Resistance Properties of an Alkali-activated Steel Slag Cementitious System. Ekoloji 2019, 28, 2203–2211. [Google Scholar]
- Cercel, J.; Adesina, A.; Das, S. Performance of eco-friendly mortars made with alkali-activated slag and glass powder as a binder. Constr. Build. Mater. 2021, 270, 121457. [Google Scholar] [CrossRef]
- Tan, H.; Deng, X.; He, X.; Zhang, J.; Zhang, X.; Su, Y.; Yang, J. Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate. Cem. Concr. Compos. 2019, 97, 387–398. [Google Scholar] [CrossRef]
- Tian, Y.; Xing, J.; Zhao, Y.; Sun, X.; Wu, P.; Qiu, J. Influence of aluminum sulfate on strength of CaO-activated slag system. Constr. Build. Mater. 2021, 306, 124895. [Google Scholar] [CrossRef]
- Zhu, X.; Hou, H.; Huang, X.; Zhou, M.; Wang, W. Enhance hydration properties of steel slag using grinding aids by mechanochemical effect. Constr. Build. Mater. 2012, 29, 476–481. [Google Scholar] [CrossRef]
- Jun, Y.; Kim, T.; Kim, J.H. Chloride-bearing characteristics of alkali-activated slag mixed with seawater: Effect of different salinity levels. Cem. Concr. Compos. 2020, 112, 103680. [Google Scholar] [CrossRef]
- Jun, Y.; Yoon, S.; Oh, J.E. A comparison study for chloride-binding capacity between alkali-activated fly ash and slag in the use of seawater. Appl. Sci. 2017, 7, 971. [Google Scholar] [CrossRef]
- Haha, M.B.; Lothenbach, B.; Le Saout, G.; Winnefeld, F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO. Cem. Concr. Res. 2011, 41, 955–963. [Google Scholar] [CrossRef]
- Haha, M.B.; Lothenbach, B.; Le Saout, G.; Winnefeld, F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al2O3. Cem. Concr. Res. 2012, 42, 74–83. [Google Scholar] [CrossRef]
- Gruskovnjak, A.; Lothenbach, B.; Holzer, L.; Figi, R.; Winnefeld, F. Hydration of alkali-activated slag: Comparison with ordinary Portland cement. Adv. Cem. Res. 2006, 18, 119–128. [Google Scholar] [CrossRef]
- Haha, M.B.; Le Saout, G.; Winnefeld, F.; Lothenbach, B. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 2011, 41, 301–310. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, S.; Li, W.; Li, Z.; Fan, J.; Shen, Z. Study of mechanical properties and durability of alkali-activated coal gangue-slag concrete. Materials 2020, 13, 5576. [Google Scholar] [CrossRef]
- Wang, J.; Lyu, X.; Wang, L.; Cao, X.; Liu, Q.; Zang, H. Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders. J. Clean. Prod. 2018, 171, 622–629. [Google Scholar] [CrossRef]
- Sato, T.; Beaudoin, J.J. Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Adv. Cem. Res. 2011, 23, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Shuhua, L.; Weiwei, H.; Qiaol, L. Hydration properties of ground granulated blast-furnace slag (GGBS) under different hydration environments. Mater. Sci. 2017, 23, 70–77. [Google Scholar]
- Li, N.; Farzadnia, N.; Shi, C. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem. Concr. Res. 2017, 100, 214–226. [Google Scholar] [CrossRef]
- Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. Structure of calcium silicate hydrate (C-S-H): Near-, Mid-, and Far-infrared spectroscopy. J. Am. Ceram. Soc. 1999, 82, 742–748. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Vázquez, T. Carbonation process of alkali-activated slag mortars. J. Mater. Sci. 2006, 41, 3071–3082. [Google Scholar] [CrossRef]
- Burciaga-Díaz, O. Parameters affecting the properties and microstructure of quicklime (CaO)-Activated slag cement pastes. Cem. Concr. Compos. 2019, 103, 104–111. [Google Scholar] [CrossRef]
- Puertas, F.; Torres-Carrasco, M. Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem. Concr. Res. 2014, 57, 95–104. [Google Scholar] [CrossRef]
- Yu, Q.-C.; Yan, C.-P.; Deng, Y.; Feng, Y.-B.; Liu, D.-C.; Yang, B. Effect of Fe2O3 on non-isothermal crystallization of CaO-MgO-Al2O3-SiO2 glass. Trans. Nonferrous Met. Soc. China 2015, 25, 2279–2284. [Google Scholar] [CrossRef]
Composition | CaO | SiO2 | Al2O3 | TiO2 | MgO | Cl | Fe2O3 | SO3 | F | MnO | K2O | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TETS | 32.83 | 24.69 | 14.14 | 8.17 | 6.44 | 6.39 | 3.67 | 1.3 | 0.97 | 0.66 | 0.27 | 0.47 |
SS | 45.36 | 16.08 | 5.07 | 1.34 | 8.93 | 0.38 | 15.94 | 0.89 | - | 2.83 | 0.35 | 2.87 |
Samples | CaO/% | SS/% | TETS/% |
---|---|---|---|
YS90T0 | 10.0 | 90.0 | 0.0 |
YS67.5T22.5 | 10.0 | 67.5 | 22.5 |
YS45T45 | 10.0 | 45.0 | 45.0 |
YS22.5T67.5 | 10.0 | 22.5 | 67.5 |
YS0T90 | 10.0 | 0.0 | 90.0 |
No | Highway Grade and Structural Layer | Very Heavy, Heavy Traffic | Heavy Traffic | Medium and Light Traffic | |||
---|---|---|---|---|---|---|---|
MCSS (MPa) | The Ratio Conforming to the Standard | MCSS (MPa) | Meet the Required Ratio | MCSS (MPa) | The Ratio Conforming to the Standard | ||
1 | Freeways and primary highways base | ≥5.0 | S0T90 | ≥4.0 | S0T90, S22.5T67.5 | ≥3.0 | S0T90, S22.5T67.5, S45T45 |
2 | Other grade highways base | ≥4.0 | S0T90, S22.5T67.5 | ≥3.0 | S0T90, S22.5T67.5, S45T45 | ≥2.0 | S0T90, S22.5T67.5, S45T45 |
3 | Subbase of Freeways and primary highways | ≥3.0 | S0T90, S22.5T67.5, S45T45 | ≥2.5 | S0T90, S22.5T67.5, S45T455 | ≥2.0 | S0T90, S22.5T67.5, S45T45 |
4 | Other grade highways subbase | ≥2.5 | S0T90, S22.5T67.5, S45T45 | ≥2.0 | S0T90, S22.5T67.5, S45T45 | ≥1.0 | S0T90, S22.5T67.5, S45T45, S67.5T22.5 |
Absorption Peak | Absorption Peak Wave Numbers (cm−1) | ||||
---|---|---|---|---|---|
1638–1634 | 1453–1400 | 1048–965 | 875 | 679–670 | |
Mode of vibration | Bending vibration of H2O [40,41] | CO32− Stretching vibration of CO32− [42,43] | Stretching vibration of Si-O bond [19,20] | In-plane bending vibration of CO32− [40,44] | Symmetric stretching vibration of Si-O tetrahedron or T-O-T structure (T = Si, Al, Fe, Ti) [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Peng, T.; Sun, H.; Ding, W.; Luo, L. Influencing Mechanism of Titanium-Extracted Tailing Slag on the Strength of CaO Steel Slag Hardened Paste. Materials 2023, 16, 937. https://doi.org/10.3390/ma16030937
Tang S, Peng T, Sun H, Ding W, Luo L. Influencing Mechanism of Titanium-Extracted Tailing Slag on the Strength of CaO Steel Slag Hardened Paste. Materials. 2023; 16(3):937. https://doi.org/10.3390/ma16030937
Chicago/Turabian StyleTang, Song, Tongjiang Peng, Hongjuan Sun, Wenjin Ding, and Liming Luo. 2023. "Influencing Mechanism of Titanium-Extracted Tailing Slag on the Strength of CaO Steel Slag Hardened Paste" Materials 16, no. 3: 937. https://doi.org/10.3390/ma16030937
APA StyleTang, S., Peng, T., Sun, H., Ding, W., & Luo, L. (2023). Influencing Mechanism of Titanium-Extracted Tailing Slag on the Strength of CaO Steel Slag Hardened Paste. Materials, 16(3), 937. https://doi.org/10.3390/ma16030937