Microstructural Features and Microhardness of the Ti-6Al-4V Alloy Synthesized by Additive Plasma Wire Deposition Welding
Abstract
:1. Introduction
2. Material and Methods
2.1. Substrate and Wire Material
2.2. Producing Welding Wire with an Ultrafine-Grained Structure
2.3. Deposition Welding Equipment, Regimes and Principles
2.4. Study of the Macro- and Microstructure
2.5. Microhardness
3. Results and Discussion
3.1. Initial Microstructure of the Welding Wire
3.2. Macrostructure of the Deposited Material of the Samples
3.3. Microstructure of the Synthesized Workpieces and Microhardness
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boyer, R.; Welsch, G.; Collings, E.W. (Eds.) Materials Properties Handbook: Titanium Alloys; ASM International: Novelty, OH, USA, 1998. [Google Scholar]
- Lutjering, G.; Williams, J.C. Titanium; Springer: Berlin/Heidelberg, Germany, New York, NY, USA; 2007. [Google Scholar]
- Williams, D.F. Titanium for medical applications. In Titanium in Medicine; Brunette, D., Tengvall, P., Textor, M., Thomson, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 14–24. [Google Scholar]
- Baltatu, M.S.; Spataru, M.C.; Verestiuc, L.; Balan, V.; Solcan, C.; Sandu, A.V.; Geanta, V.; Voiculescu, I.; Vizureanu, P. Design, Synthesis, and Preliminary Evaluation for Ti-Mo-Zr-Ta-Si Alloys for Potential Implant Applications. Materials 2021, 14, 6806. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Progr. Mater. Sci. 2018, 92, 112–2241. [Google Scholar] [CrossRef]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. Int. J. Adv. Manuf. Technol. 2015, 81, 465–481. [Google Scholar] [CrossRef]
- Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Xu, J.; Norrish, J. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. J. Manuf. Process. 2018, 35, 127–139. [Google Scholar] [CrossRef]
- Haghdadi, N.; Laleh, M.; Moyle, M.; Primig, S. Additive manufacturing of steels: A review of achievements and challenges. J. Mater. Sci. 2021, 56, 64–107. [Google Scholar] [CrossRef]
- Brandl, E.; Michailov, V.; Viehweger, B.; Leyens, C. Deposition of Ti–6Al–4V using laser and wire, part II: Hardness and dimensions of single beads. Surf. Coat. Technol. 2011, 206, 1130–1141. [Google Scholar] [CrossRef]
- Mok, S.H.; Bi, G.; Folkes, J.; Pashby, I. Deposition of Ti–6Al–4V using a high power diode laser and wire, Part I: Investigation on the process characteristics. Surf. Coat. Technol. 2008, 202, 3933–3939. [Google Scholar] [CrossRef]
- Baufeld, B.; Brandl, E.; van der Biest, O. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition. J. Mater. Process. Technol. 2011, 211, 1146–1158. [Google Scholar] [CrossRef]
- Mok, S.H.; Bi, G.; Folkes, J.; Pashby, I.; Segal, J. Deposition of Ti–6Al–4V using a high power diode laser and wire, Part II: Investigation on the mechanical properties. Surf. Coat. Technol. 2008, 202, 4613–4619. [Google Scholar] [CrossRef]
- Brandl, E.; Schoberth, A.; Leyens, C. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater. Sci. Eng. A 2012, 532, 295–307. [Google Scholar] [CrossRef]
- Yi, H.-J.; Kim, J.-W.; Kim, Y.-L.; Shin, S. Effects of Cooling Rate on the Microstructure and Tensile Properties of Wire-Arc Additive Manufactured Ti–6Al–4V Alloy. Metals Mater. Int. 2020, 26, 1235–1246. [Google Scholar] [CrossRef]
- Xian, G.; Oh, J.M.; Lee, J.; Cho, S.M.; Yeom, J.-T.; Choi, Y.; Kang, N. Effect of heat input on microstructure and mechanical property of wire-arc additive manufactured Ti-6Al-4V alloy. Weld. World 2022, 66, 847–861. [Google Scholar] [CrossRef]
- Syed, A.K.; Zhang, X.; Caballero, A.; Shamir, M.; Williams, S. Influence of deposition strategies on tensile and fatigue properties in a wire + arc additive manufactured Ti-6Al-4V. Int. J. Fatigue 2021, 149, 106268. [Google Scholar] [CrossRef]
- Donoghue, J.; Antonysamy, A.A.; Martina, F.; Colegrove, P.A.; Williams, S.W.; Prangnell, P.B. The effectiveness of combining rolling deformation with Wire–Arc Additive Manufacture on β-grain refinement and texture modification in Ti–6Al–4V. Mater. Charact. 2016, 114, 103–114. [Google Scholar] [CrossRef]
- McAndrew, A.R.; Rosales, M.A.; Colegrove, P.A.; Hönnige, J.R.; Ho, A.; Fayolle, R.; Eyitayo, K.; Stan, I.; Sukrongpang, P.; Crochemore, A.; et al. Interpass rolling of Ti–6Al–4V wire+arc additively manufactured features for microstructural refinement. Addit. Manuf. 2018, 21, 340–349. [Google Scholar] [CrossRef]
- Shchitsyn, Y.D.; Krivonosova, E.A.; Trushnikov, D.N.; Ol’shanskaya, T.V.; Kartashov, M.F.; Neulybin, S.D. Use of CMT-Surfacing for Additive Formation of Titanium Alloy Workpieces. Metallurgist 2020, 64, 67–74. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Zhilyaev, A.P.; Langdon, T.G. Bulk Nanostructured Materials: Fundamentals and Applications; Wiley/TMS: Hoboken, NJ, USA, 2014. [Google Scholar]
- Semenova, I.P.; Polyakova, V.V.; Dyakonov, G.S.; Polyakov, A.V. Ultrafine-Grained Titanium-Based Alloys: Structure and Service Properties for Engineering Applications. Adv. Eng. Mater. 2019, 22, 1900651. [Google Scholar] [CrossRef]
- Baum, B.A. Metallic Liquids; Nauka: Moscow, Russia, 1979; 120p. (In Russian) [Google Scholar]
- Tyagunov, G.V.; Baryshev, E.E.; Tyagnov, A.G.; Mushnikov, V.S.; Kostina, T.K. On some structuring features of metallic fluids. Bull. South Ural. State University. Ser. Metall. 2018, 18, 16–25. (In Russian) [Google Scholar] [CrossRef]
- Molina-Aldareguia, J.M.; Perez-Prado, M.T.; Valiev, R.Z.; Semenova, I.P.; Sabirov, I. High strength ultra-fine grained titanium produced via a novel SPD processing route. Int. J. Mater. Form 2010, 3, 407–410. [Google Scholar] [CrossRef]
- Olshanskaya, T.; Trushnikov, D.; Dushina, A.; Ganeev, A.; Polyakov, A.; Semenova, I. Microstructure and Properties of the 308LSi Austenitic Steel Produced by Plasma-MIG Deposition Welding with Layer-by-Layer Peening. Metals 2022, 12, 82. [Google Scholar] [CrossRef]
- Baufeld, B.; Van der Biest, O.; Gault, R. Microstructure of Ti–6Al–4V specimens produced by Shaped Metal Deposition. Int. J. Mater. Res. 2009, 100, 1536–1542. [Google Scholar] [CrossRef]
- Semenova, I.P.; Saitova, L.R.; Dotsenko, T.V.; Kil’mametov, A.R.; Valiev, R.Z.; Islamgaliev, R.K.; Demakov, S.L. Evolution of the structure of the VT6 alloy subjected to equal-channel angular pressing. Phys. Met. Metallogr. 2005, 100, 66–72. [Google Scholar]
- Lee, H.; Park, S.; Kang, C.-Y. Effect of plasma current on surface defects of plasma-MIG welding in cryogenic aluminum alloys. J. Mater. Process. Technol. 2015, 223, 203–215. [Google Scholar] [CrossRef]
- Lee, H.-K.; Chun, K.-S.; Park, S.-H.; Kang, C.-Y. Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys. Int. J. Nav. Archit. Ocean Eng. 2015, 7, 770–783. [Google Scholar] [CrossRef] [Green Version]
Al | V | Fe | O | C | N | H |
---|---|---|---|---|---|---|
6.02 | 4.00 | 0.19 | 0.154 | 0.019 | 0.008 | 0.0033 |
Parameters | Values |
---|---|
Sample section prior to deformation, mm | Ø12 |
Sample section after deformation, mm | 11.5 × 11.5 ± 0.3 |
Workpiece temperature, °C | 500 ± 5 |
Die-set temperature, °C | 600 ± 5 |
Pressing route | Bc |
Number of processing cycles, pcs. | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, I.P.; Shchitsyn, Y.D.; Trushnikov, D.N.; Gareev, A.I.; Polyakov, A.V.; Pesin, M.V. Microstructural Features and Microhardness of the Ti-6Al-4V Alloy Synthesized by Additive Plasma Wire Deposition Welding. Materials 2023, 16, 941. https://doi.org/10.3390/ma16030941
Semenova IP, Shchitsyn YD, Trushnikov DN, Gareev AI, Polyakov AV, Pesin MV. Microstructural Features and Microhardness of the Ti-6Al-4V Alloy Synthesized by Additive Plasma Wire Deposition Welding. Materials. 2023; 16(3):941. https://doi.org/10.3390/ma16030941
Chicago/Turabian StyleSemenova, Irina P., Yuri D. Shchitsyn, Dmitriy N. Trushnikov, Alfiz I. Gareev, Alexander V. Polyakov, and Mikhail V. Pesin. 2023. "Microstructural Features and Microhardness of the Ti-6Al-4V Alloy Synthesized by Additive Plasma Wire Deposition Welding" Materials 16, no. 3: 941. https://doi.org/10.3390/ma16030941
APA StyleSemenova, I. P., Shchitsyn, Y. D., Trushnikov, D. N., Gareev, A. I., Polyakov, A. V., & Pesin, M. V. (2023). Microstructural Features and Microhardness of the Ti-6Al-4V Alloy Synthesized by Additive Plasma Wire Deposition Welding. Materials, 16(3), 941. https://doi.org/10.3390/ma16030941