Ab Initio Investigation of the Adsorption of CO2 Molecules on Defect Sites of Graphene Surfaces: Role of Local Vacancy Structures
Abstract
:1. Introduction
2. Computational Details and Models
3. Results and Discussion
3.1. Structural Scrutiny of Defected Sheets and Determination of Adsorption Sites
3.2. Adsorption/Interaction/Deformation Energy and Charge Transfer
3.3. Features of Physical Adsorption on Various Local Structures
3.3.1. Physisorption on Pristine Graphene
3.3.2. Physisorption on Carbon with Dangling Bond
3.3.3. Physisorption on Carbon Shared by Five-Membered Rings, Six-Membered Rings and a Vacancy
3.3.4. Physisorption on Carbon Shared by Two Six-Membered Rings and a Vacancy
3.4. Features of Chemical Adsorptions on Various Local Structures
3.4.1. Energetically Favorable Chemisorption
3.4.2. Energetically Unfavorable Chemisorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, H.J.; Xu, B.; Shi, S.Q.; Ouyang, C.Y. First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries. J. Appl. Phys. 2012, 112, 104316. [Google Scholar] [CrossRef]
- Kvashnin, A.G.; Avramov, P.V.; Sakai, S.; Nechaev, Y.S.; Sorokin, P.B. Estimation of graphene surface stability against the adsorption of environmental and technological chemical agents. Phys. Status Solidi B 2017, 254, 1600702. [Google Scholar] [CrossRef]
- Topsakal, M.; Sahin, H.; Ciraci, S. Graphene coatings: An efficient protection from oxidation. Phys. Rev. B 2012, 85, 155445. [Google Scholar] [CrossRef] [Green Version]
- Walker, P.; Rusinko, F.; Austin, L. Gas Reactions of Carbon. Adv. Catal. 1959, 11, 133–221. [Google Scholar] [CrossRef]
- Radovic, L. Reactivity of Carbons and Graphites. In Encyclopedia of Materials: Science and Technology, 2nd ed.; 2001; pp. 975–985. [Google Scholar] [CrossRef]
- Lowry, H. Chemistry of Coal Utilization, Supplementary Volume; John Wiley and Sons: New York, NY, USA, 1963. [Google Scholar]
- Elliott, M. Chemistry of Coal Utilization, 2nd Supplementary Volume; John Wiley and Sons: New York, NY, USA, 1981. [Google Scholar]
- Laurendeau, N.M. Heterogeneous kinetics of coal char gasification and combustion. Prog. Energy Combust. Sci. 1978, 4, 221–270. [Google Scholar] [CrossRef]
- Xu, S.C.; Irle, S.; Musaev, D.G.; Lin, M.C. Quantum Chemical Prediction of Reaction Pathways and Rate Constants for Dissociative Adsorption of COxand NOxon the Graphite (0001) Surface. J. Phys. Chem. B 2006, 110, 21135–21144. [Google Scholar] [CrossRef]
- Li, W.; Geng, X.; Guo, Y.; Rong, J.; Gong, Y.; Wu, L.; Zhang, X.; Li, P.; Xu, J.; Cheng, G.; et al. Reduced Graphene Oxide Electrically Contacted Graphene Sensor for Highly Sensitive Nitric Oxide Detection. ACS Nano 2011, 5, 6955–6961. [Google Scholar] [CrossRef]
- Yoon, H.J.; Jun, D.H.; Yang, J.H.; Zhou, Z.; Yang, S.S.; Cheng, M.M.-C. Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B Chem. 2011, 157, 310–313. [Google Scholar] [CrossRef]
- Akilan, R.; Malarkodi, M.; Vijayakumar, S.; Gopalakrishnan, S.; Shankar, R. Modeling of 2-D hydrogen-edge capped defected & boron-doped defected graphene sheets for the adsorption of CO2, SO2 towards energy harvesting applications. Appl. Surf. Sci. 2019, 463, 596–609. [Google Scholar] [CrossRef]
- Vallejos-Burgos, F.; Coudert, F.-X.; Kaneko, K. Air separation with graphene mediated by nanowindow-rim concerted motion. Nat. Commun. 2018, 9, 1812. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.-H.; Wang, D.-W.; Gentle, I.R. Revisiting oxygen reduction reaction on oxidized and unzipped carbon nanotubes. Carbon 2015, 81, 295–304. [Google Scholar] [CrossRef]
- Sha, H.-D.; Yuan, X.; Li, L.; Ma, Z.; Ma, Z.-F.; Zhang, L.; Zhang, J. Experimental identification of the active sites in pyrolyzed carbon-supported cobalt–polypyrrole–4-toluenesulfinic acid as electrocatalysts for oxygen reduction reaction. J. Power Sources 2014, 255, 76–84. [Google Scholar] [CrossRef]
- Radovic, L.; Gogotsi, Y. Surface Chemical and Electrochemical Properties of Carbons; CRC Press: New York, NY, USA, 2010. [Google Scholar]
- Mckee, D. Chemistry & Physics of Carbon; CRC Press: New York, NY, USA, 1991. [Google Scholar]
- Harvey, L. Global Warming; Routledge: London, UK, 2018. [Google Scholar]
- Wei, J.; Zhou, D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D. A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2Capture and Supercapacitors. Adv. Funct. Mater. 2013, 23, 2322–2328. [Google Scholar] [CrossRef]
- Jiménez, V.; Ramírez-Lucas, A.; Díaz, J.A.; Sánchez, P.; Romero, A. CO2 Capture in Different Carbon Materials. Environ. Sci. Technol. 2012, 46, 7407–7414. [Google Scholar] [CrossRef]
- Cabrera-Sanfelix, P. Adsorption and Reactivity of CO2 on Defective Graphene Sheets. J. Phys. Chem. A 2009, 113, 493–498. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Chowdhury, S. Recent advances and progress in the development of graphene-based adsorbents for CO2 capture. J. Mater. Chem. A 2015, 3, 21968–21989. [Google Scholar] [CrossRef]
- Gadipelli, S.; Guo, Z. Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 2015, 69, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.; Novoselov, K. The rise of graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: Singapore, 2010; pp. 11–19. [Google Scholar]
- Ghosh, A.; Subrahmanyam, K.S.; Krishna, K.S.; Datta, S.; Govindaraj, A.; Pati, S.K.; Rao, C.N.R. Uptake of H2 and CO2 by Graphene. J. Phys. Chem. C 2008, 112, 15704–15707. [Google Scholar] [CrossRef]
- Medeiros PV, C.; Gueorguiev, G.K.; Stafström, S. Bonding, charge rearrangement and interface dipoles of benzene, graphene, and PAH molecules on Au(111) and Cu(111). Carbon 2015, 81, 620–628. [Google Scholar] [CrossRef]
- Lundgren, C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics. Nanotechnology 2022, 33, 335706. [Google Scholar] [CrossRef]
- Li, K.; Khanna, R.; Zhang, H.; Ma, S.; Liang, Z.; Li, G.; Barati, M.; Zhang, J. Thermal behaviour during initial stages of graphene oxidation: Implications for reaction kinetics and mechanisms. Chem. Eng. J. 2021, 421, 129742. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, Z.; Li, K.; Zhang, J.; Ren, S. A density functional theory study on the adsorption reaction mechanism of double CO2 on the surface of graphene defects. J. Mol. Model. 2022, 28, 1–11. [Google Scholar]
- Murugan, L.; Lakshmipathi, S.; Bhatia, S. Influence of in-plane Stone–Thrower–Wales defects and edge functionalisation on the adsorption of CO2 and H2O on graphene. RSC Adv. 2014, 4, 39576–39587. [Google Scholar] [CrossRef] [Green Version]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Chandra, V.; Yu, S.U.; Kim, S.H.; Yoon, Y.S.; Kim, D.Y.; Kwon, A.H.; Meyyappan, M.; Kim, K.S. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem. Commun. 2012, 48, 735–737. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Lan, H.; Peng, L.; Suenaga, K.; Iijima, S. Deriving Carbon Atomic Chains from Graphene. Phys. Rev. Lett. 2009, 102, 205501. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Li, G.-Y.; Zhang, H.; Wang, J.-P.; Ding, Z.-Z.; Guo, R.; Cheng, H.; Liang, Y.-H. Molecular basis for coke strength: Stacking-fault structure of wrinkled carbon layers. Carbon 2020, 162, 56–65. [Google Scholar] [CrossRef]
- Li, K.; Zhang, H.; Li, G.-Y.; Zhang, J.; Bouhadja, M.; Liu, Z.; Skelton, A.A.; Barati, M. ReaxFF Molecular Dynamics Simulation for the Graphitization of Amorphous Carbon: A Parametric Study. J. Chem. Theory Comput. 2018, 14, 2322–2331. [Google Scholar] [CrossRef]
- Yadav, S.; Zhu, Z.; Singh, C.V. Defect engineering of graphene for effective hydrogen storage. Int. J. Hydrogen Energy 2014, 39, 4981–4995. [Google Scholar] [CrossRef]
- Liu, Y.; Wilcox, J. CO2 Adsorption on Carbon Models of Organic Constituents of Gas Shale and Coal. Environ. Sci. Technol. 2011, 45, 809–814. [Google Scholar] [CrossRef]
- Chen, N.; Yang, R.T. Ab Initio Molecular Orbital Study of the Unified Mechanism and Pathways for Gas−Carbon Reactions. J. Phys. Chem. A 1998, 102, 6348–6356. [Google Scholar] [CrossRef]
- Chen, N.; Yang, R.T. Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry. Carbon 1998, 36, 1061–1070. [Google Scholar] [CrossRef]
- Montoya, A.; Mondragón, F.; Truong, T.N. First-Principles Kinetics of CO Desorption from Oxygen Species on Carbonaceous Surface. J. Phys. Chem. A 2002, 106, 4236–4239. [Google Scholar] [CrossRef]
- Montoya, A.; Truong, T.-T.T.; Mondragón, F. CO Desorption from Oxygen Species on Carbonaceous Surface: 1. Effects of the Local Structure of the Active Site and the Surface Coverage. J. Phys. Chem. A 2001, 105, 6757–6764. [Google Scholar] [CrossRef]
- Chen, S.G.; Yang, R.T.; Kapteijn, F.; Moulijn, J.A. A new surface oxygen complex on carbon: Toward a unified mechanism for carbon gasification reactions. Ind. Eng. Chem. Res. 1993, 32, 2835–2840. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009, 21, 395502. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Langreth, D.C.; I Lundqvist, B.; Chakarova-Käck, S.D.; Cooper, V.; Dion, M.; Hyldgaard, P.; Kelkkanen, A.; Kleis, J.; Kong, L.; Li, S.; et al. A density functional for sparse matter. J. Phys. Condens. Matter 2009, 21, 084203. [Google Scholar] [CrossRef] [Green Version]
- Román-Pérez, G.; Soler, J.M. Efficient Implementation of a van der Waals Density Functional: Application to Double-Wall Carbon Nanotubes. Phys. Rev. Lett. 2009, 103, 096102. [Google Scholar] [CrossRef] [Green Version]
- Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D.; Lundqvist, B. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Robertson, A.W.; Lee, G.-D.; He, K.; Yoon, E.; Kirkland, A.I.; Warner, J.H. Stability and Dynamics of the Tetravacancy in Graphene. Nano Lett. 2014, 14, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Zhang, X.; Duan, Y.; Yan, M.; Chapman, R.; Jiang, Y.; Li, H. Oxidation of graphene with variable defects: Alternately symmetrical escape and self-restructuring of carbon rings. Nanoscale 2020, 12, 10140–10148. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.-Q.; Shi, J.-J.; Yang, M.; Zhang, S.; Zhang, M. Magnetism induced by D3-symmetry tetra-vacancy defects in graphene. Chem. Phys. Lett. 2011, 510, 246–251. [Google Scholar] [CrossRef]
- Yamashita, K.; Saito, M.; Oda, T. Atomic Geometry and Stability of Mono-, Di-, and Trivacancies in Graphene. Jpn. J. Appl. Phys. 2006, 45, 6534–6536. [Google Scholar] [CrossRef]
- Noei, M. DFT study on the sensitivity of open edge graphene toward CO2 gas. Vacuum 2016, 131, 194–200. [Google Scholar] [CrossRef]
- Montoya, A.; Mondragón, F.; Truong, T.N. CO2 adsorption on carbonaceous surfaces: A combined experimental and theoretical study. Carbon 2003, 41, 29–39. [Google Scholar] [CrossRef]
- Takeuchi, K.; Yamamoto, S.; Hamamoto, Y.; Shiozawa, Y.; Tashima, K.; Fukidome, H.; Koitaya, T.; Mukai, K.; Yoshimoto, S.; Suemitsu, M.; et al. Adsorption of CO2 on Graphene: A Combined TPD, XPS, and vdW-DF Study. J. Phys. Chem. C 2017, 121, 2807–2814. [Google Scholar] [CrossRef]
- Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural Defects in Graphene. ACS Nano 2011, 5, 26–41. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, Z.; Zhang, S.; Zhang, J.; Li, K. Ab Initio Investigation of the Adsorption of CO2 Molecules on Defect Sites of Graphene Surfaces: Role of Local Vacancy Structures. Materials 2023, 16, 981. https://doi.org/10.3390/ma16030981
Wang C, Wang Z, Zhang S, Zhang J, Li K. Ab Initio Investigation of the Adsorption of CO2 Molecules on Defect Sites of Graphene Surfaces: Role of Local Vacancy Structures. Materials. 2023; 16(3):981. https://doi.org/10.3390/ma16030981
Chicago/Turabian StyleWang, Cui, Ziming Wang, Shujie Zhang, Jianliang Zhang, and Kejiang Li. 2023. "Ab Initio Investigation of the Adsorption of CO2 Molecules on Defect Sites of Graphene Surfaces: Role of Local Vacancy Structures" Materials 16, no. 3: 981. https://doi.org/10.3390/ma16030981
APA StyleWang, C., Wang, Z., Zhang, S., Zhang, J., & Li, K. (2023). Ab Initio Investigation of the Adsorption of CO2 Molecules on Defect Sites of Graphene Surfaces: Role of Local Vacancy Structures. Materials, 16(3), 981. https://doi.org/10.3390/ma16030981