A Binary Salt Mixture LiCl–LiOH for Thermal Energy Storage
Abstract
:1. Introduction
2. Experimental and Methodology
2.1. Sample Preparation
2.2. Materials Characterization
2.3. Experimental Procedure
3. Results and Discussions
3.1. Phase Diagram, Melting Temperature, and Heat of Fusion
3.2. Thermal Repeatability
3.3. Thermal Stability
3.4. Chemical/Structural Stability
3.5. SEM/EDS Characterization
3.6. X-ray Photoelectron Spectroscopy (XPS) Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kenisarin, M.M. High-temperature phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2010, 14, 955–970. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Al-Sulaiman, F.A.; Ibrahim, N.I.; Zahir, M.H.; Al-Ahmed, A.; Saidur, R.; Yılbaş, B.; Sahin, A. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 1072–1089. [Google Scholar] [CrossRef]
- Garg, H.P.; Mullick, S.; Bhargava, V.K. Solar Thermal Energy Storage; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Navarro, L.; De Gracia, A.; Colclough, S.; Browne, M.; McCormack, S.J.; Griffiths, P.; Cabeza, L.F. Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems. Renew. Energy 2016, 88, 526–547. [Google Scholar] [CrossRef]
- Reddy, M.R.; Nallusamy, N.; Prasad, A.B.; Reddy, H.K. Thermal energy storage system using phase change materials: Constant heat source. Therm. Sci. 2012, 16, 1097–1104. [Google Scholar] [CrossRef]
- Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.d.; De Gracia, A.; Fernández, A. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Cárdenas, B.; León, N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renew. Sustain. Energy Rev. 2013, 27, 724–737. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Sharma, S.D.; Sagara, K. Latent heat storage materials and systems: A review. Int. J. Green Energy 2005, 2, 1–56. [Google Scholar] [CrossRef]
- Milian, Y.; Ushak, S.; Cabeza, L.; Grageda, M. Advances in the development of latent heat storage materials based on inorganic lithium salts. Sol. Energy Mater. Sol. Cells 2020, 208, 110344. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Y.; Bruno, F.; Li, S. Thermal stability of Na2CO3-Li2CO3 as a high temperature phase change material for thermal energy storage. Thermochim. Acta 2017, 650, 88–94. [Google Scholar] [CrossRef]
- Zhou, D.; Eames, P. A study of a eutectic salt of lithium nitrate and sodium chloride (87–13%) for latent heat storage. Sol. Energy Mater. Sol. Cells 2017, 167, 157–161. [Google Scholar] [CrossRef]
- Liu, M.; Saman, W.; Bruno, F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev. 2012, 16, 2118–2132. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Y.; Liu, M.; Bruno, F.; Li, S. Eutectic Na2CO3–NaCl salt: A new phase change material for high temperature thermal storage. Sol. Energy Mater. Sol. Cells 2016, 152, 155–160. [Google Scholar] [CrossRef]
- Rosiek, S.; Garrido, F.J.B. Performance evaluation of solar-assisted air-conditioning system with chilled water storage (CIESOL building). Energy Convers. Manag. 2012, 55, 81–92. [Google Scholar] [CrossRef]
- Lafdi, K.; Mesalhy, O.; Elgafy, A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon 2008, 46, 159–168. [Google Scholar] [CrossRef]
- Alva, G.; Liu, L.; Huang, X.; Fang, G. Thermal energy storage materials and systems for solar energy applications. Renew. Sustain. Energy Rev. 2017, 68, 693–706. [Google Scholar] [CrossRef]
- Misra, A.K.; Whittenberger, J.D. Estimated Heats of Fusion of Fluoride Salt Mixtures Suitable for Thermal Energy Storage Applications; NASA: Washington, DC, USA, 1986. [Google Scholar]
- Grágeda, M. Production of Battery Grade Lithium Hydroxide: Energy Efficiency and Water Consumption. In Proceedings of the First International Workshop in “Lithium, Industrial Minerals and Energy”, Antofagasta, Chile, 8–10 January 2014. [Google Scholar]
- Simmons, J. Materials Critical to the Energy Industry: An Introduction; University of Augsburg: Augsburg, Germany, 2011. [Google Scholar]
- Cabeza, L.F.; Gutierrez, A.; Barreneche, C.; Ushak, S.; Fernández, Á.G.; Fernádez, A.I.; Grágeda, M. Lithium in thermal energy storage: A state-of-the-art review. Renew. Sustain. Energy Rev. 2015, 42, 1106–1112. [Google Scholar] [CrossRef]
- Fromer, N.; Eggert, R.G.; Lifton, J. Critical Materials for Sustainable Energy Applications; California Institute of Technology: Pasadena, CA, USA, 2011. [Google Scholar]
- Tye, R.P.; Bourne, J.G.; Desjarlais, A.O. Thermal Energy Storage Material Thermophysical Property Measurement and Heat Transfer Impact; NASA Report No. NASA-CR-135098; NASA: Washington, DC, USA, 1976. [Google Scholar]
- Zhou, D.; Eames, P. Thermal characterisation of binary sodium/lithium nitrate salts for latent heat storage at medium temperatures. Sol. Energy Mater. Sol. Cells 2016, 157, 1019–1025. [Google Scholar] [CrossRef] [Green Version]
- FactSage. Phase Diagram. 2022. Available online: https://www.factsage.com/ (accessed on 1 January 2022).
- NIST. (6 June 2000, 15 September 2012). XPS Database. Available online: https://srdata.nist.gov/xps/main_search_menu.aspx (accessed on 4 August 2022).
- Sato, Y.; Takeda, O. Hydrogen Storage and Transportation System through Lithium Hydride Using Molten Salt Technology. In Molten Salts Chemistry; Elsevier: Amsterdam, The Netherlands, 2013; pp. 451–470. [Google Scholar]
Year | Total Demand by Compound MT LCE | Total Consumption by Applications MT LCE |
---|---|---|
2011 | 140,056 | 129,282 |
2015 | 204,732 | 188,983 |
2020 | 327,743 | 302,532 |
2025 | 540,119 | 498,571 |
S. No | Samples |
---|---|
1 | 27 mol% LiCl-73 mol% LiOH |
2 | 32 mol% LiCl-68 mol% LiOH |
3 | 37 mol% LiCl-63 mol% LiOH |
4 | 42 mol% LiCl-58 mol% LiOH |
Standard Material | Expected Melting Point °C | Measured Melting Point °C | Relative Error % | Expected Heat of Fusion J/g | Measured Heat of Fusion J/g | Relative Error % |
---|---|---|---|---|---|---|
Gold (Au) | 1064.18 | 1061.61 | 0.2 | 64.6 | 67 | 3 |
Lithium Chloride (LiCl) | 610 | 602 | 1 | 441 | 449 | 1 |
S. No | Samples | Onset Temperature (Heating) °C | Onset Temperature (Cooling) °C | Heat of Fusion J/g | Heat of Solidification J/g |
---|---|---|---|---|---|
1 | 27 mol% LiCl-73 mol% LiOH | 271 | 265 | 214 | 198 |
2 | 32 mol% LiCl-68 mol% LiOH | 269 | 265 | 379 | 375 |
3 | 37 mol% LiCl-63 mol% LiOH | 270 | 268 | 297 | 218 |
4 | 42 mol% LiCl-58 mol% LiOH | 289 | 282 | 230 | 201 |
Sample | Elements | Position eV | Atomic % |
---|---|---|---|
32 mol% LiCl-68 mol% LiOH (with zero cycles) | Li 1s | 52 | 1.76 |
Cl 2p | 195 | 44.90 | |
O 1s | 528 | 53.34 | |
32 mol% LiCl-68 mol% LiOH (decomposed at 700 °C) | Li 1s | 53 | 2.08 |
Cl 2p | 196 | 62.93 | |
O 1s | 528 | 34.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, N.; Minakshi, M.; Ruprecht, J.; Liew, W.Y.H.; Jiang, Z.-T. A Binary Salt Mixture LiCl–LiOH for Thermal Energy Storage. Materials 2023, 16, 1434. https://doi.org/10.3390/ma16041434
Hassan N, Minakshi M, Ruprecht J, Liew WYH, Jiang Z-T. A Binary Salt Mixture LiCl–LiOH for Thermal Energy Storage. Materials. 2023; 16(4):1434. https://doi.org/10.3390/ma16041434
Chicago/Turabian StyleHassan, Naveed, Manickam Minakshi, John Ruprecht, Willey Yun Hsien Liew, and Zhong-Tao Jiang. 2023. "A Binary Salt Mixture LiCl–LiOH for Thermal Energy Storage" Materials 16, no. 4: 1434. https://doi.org/10.3390/ma16041434
APA StyleHassan, N., Minakshi, M., Ruprecht, J., Liew, W. Y. H., & Jiang, Z. -T. (2023). A Binary Salt Mixture LiCl–LiOH for Thermal Energy Storage. Materials, 16(4), 1434. https://doi.org/10.3390/ma16041434