Compositionally Complex Alloys: Some Insights from Photoemission Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation, Processing and Characterization of Alloys
2.2. Photoemission Spectroscopy
3. Results and Discussions
3.1. The Shape of Valence Band Spectrum—Information Value
3.2. Band Crossing or Ideal Solution Behavior
3.3. Effects of Some Constituents on Spectra of Cantor-Type Alloys
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a-CCA | amorphous CCA |
BCC | body-centered cubic (crystalline structure) |
CA | conventional alloys |
CCA | compositionally complex alloys |
c-CCA | crystalline CCA |
DOS | density of states |
EB | binding energy |
EDS | energy-dispersive spectroscopy |
ES | electronic structure |
FCC | face-centered cubic (crystalline structure) |
HCP | hexagonal close-packed (crystalline structure) |
HEA | high-entropy alloy |
L | Langmuirs |
LTSH | low-temperature specific heat measurements |
MG | metallic glasses |
PES | photoemission spectroscopy |
ROM | rule of mixtures |
SEM | scanning electron microscopy |
TE | early transition metal |
TL | late transition metal |
UHV | ultrahigh vacuum |
UPS | ultraviolet photoemission spectroscopy |
VB | valence band |
VEC | valence electron count |
XPS | X-ray photoemission spectroscopy |
XRD | X-ray diffraction |
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 2014, 81, 428–441. [Google Scholar] [CrossRef]
- Ma, L.; Wang, T.; Zhang, A.; Inoue, A. Bulk glass formation of Ti-Zr-Hf-Cu-M (M = Fe, Co, Ni) alloys. Metal. Trans. 2002, 43, 277–280. [Google Scholar] [CrossRef]
- Cantor, B.; Kim, K.; Warren, P.J. Novel Multicomponent Amorphous Alloys. Mater. Sci. Forum 2002, 386, 27–32. [Google Scholar] [CrossRef]
- Cunliffe, A.; Plummer, J.; Figueroa, I.A.; Todd, I. Glass formation in a high entropy alloy system by design. Intermetallics 2012, 23, 204–207. [Google Scholar] [CrossRef]
- Miracle, D.B. High entropy alloys as a bold step forward in alloy development. Nat. Commun. 2019, 10, 1805. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Gao, M.C.; Liaw, P.K.; Miracle, D.B. Focus issue: Fundamental understanding and applications of high-entropy alloys. J. Mater. Res. 2018, 33, 2853–2854. [Google Scholar] [CrossRef]
- Senkov, O.; Miller, J.; Miracle, D.; Woodward, C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 2015, 6, 6529. [Google Scholar] [CrossRef] [Green Version]
- Babić, E.; Pajić, D.; Zadro, K.; Biljaković, K.; Trontl, V.M.; Pervan, P.; Starešinić, D.; Figueroa, I.A.; Kuršumović, A.; Michalik, S.; et al. Structure property relationship in (TiZrNbCu)1−xNix metallic glasses. J. Mater. Res. 2018, 33, 3170–3183. [Google Scholar] [CrossRef]
- Ikeda, Y.; Grabowski, B.; Körmann, F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys. Mater. Charact. 2019, 147, 464–511. [Google Scholar] [CrossRef]
- Niu, C.; LaRosa, C.R.; Miao, J.; Mills, M.J.; Ghazisaeidi, M. Magnetically-driven phase transformation strengthening in high entropy alloys. Nat. Commun. 2018, 9, 1363. [Google Scholar] [CrossRef]
- Sales, B.C.; Jin, K.; Bei, H.; Stocks, G.M.; Samolyuk, G.D.; May, A.F.; McGuire, M. Quantum Critical Behavior in a Concentrated Ternary Solid Solution. Sci. Rep. 2016, 6, 26179. [Google Scholar] [CrossRef]
- Pickering, E.J.; Jones, N.G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 2016, 61, 183–202. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Q.; Lu, J.; Liu, C.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Guo, S. Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 2015, 31, 1223–1230. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S. High-Entropy Alloys, 1st ed.; Butterworth-Heinemann: London, UK, 2014. [Google Scholar]
- Gao, M.C.; Yeh, J.-W.; Liaw, P.K.; Zhang, Y. High Entropy Alloys; Springer International Publisher: Cham, Switzerland, 2016. [Google Scholar]
- Babić, E.; Biljaković, K.; Figueroa, A.I.; Kuršumović, A.; Mikšić Trontl, V.; Pervan, P.; Remenyi, G.; Ristić, R.; Starešinić, D. High-entropy alloys: New challenge in materials science. In Proceedings of the Solid-State Science & Research Meeting (SCIRES19), Zagreb, Croatia, 28–30 June 2017; Book of Abstracts. p. 25. [Google Scholar]
- Biljaković, K.; Remenyi, G.; Figueroa, I.A.; Ristić, R.; Pajić, D.; Kuršumović, A.; Starešinić, D.; Zadro, K.; Babić, E. Electronic structure and properties of (TiZrNbCu)1−xNix high entropy amorphous alloys. J. Alloy. Compd. 2017, 695, 2661–2668. [Google Scholar] [CrossRef] [Green Version]
- Ristic, R.; Babic, E. Comment on “Mixing Entropy Enhanced Energy States in Metallic Glasses”. Chin. Phys. Lett. 2022, 39, 119901. [Google Scholar] [CrossRef]
- Ristić, R.; Figueroa, I.A.; Lachová, A.; Michalik, S.; Trontl, V.M.; Pervan, P.; Zadro, K.; Pajić, D.; Babić, E. Transition from high-entropy to Cu-based (TiZrNbNi)1−xCux metallic glasses. J. Appl. Phys. 2019, 126, 154105. [Google Scholar] [CrossRef]
- Kuveždić, M.; Tafra, E.; Basletić, M.; Ristić, R.; Pervan, P.; Trontl, V.M.; Figueroa, I.A.; Babić, E. Change of electronic properties on transition from high-entropy to Ni-rich (TiZrNbCu)1−xNi alloys. J. Non-Crystalline Solids 2020, 531, 119865. [Google Scholar] [CrossRef]
- Figueroa, I.A.; Ristić, R.; Kuršumović, A.; Biljaković, K.; Starešinić, D.; Pajić, D.; Remenyi, G.; Babić, E. Properties of (TiZrNbCu)1−xNix metallic glasses. J. Alloy. Compd. 2018, 745, 455–459. [Google Scholar] [CrossRef]
- Babić, E.; Drobac, Đ.; Figueroa, I.A.; Laurent-Brocq, M.; Marohnić, Ž.; Mikšić Trontl, V.; Pajić, D.; Perrière, L.; Pervan, P.; Remenyi, G.; et al. Transition from High-Entropy to Conventional Alloys: Which Are Better? Materials 2021, 14, 5824. [Google Scholar] [CrossRef]
- Ristic, R.; Figueroa, I.A.; Salčinvić-Fetić, A.; Zadro, K.; Mikšić Trontl, V.; Pervan, P.; Babić, E. Transition from high-entropy to conventional (TiZrNbCu)1−xCox metallic glasses. J. Appl. Phys. 2021, 130, 195102. [Google Scholar] [CrossRef]
- Sun, L.; Cava, R.J. High-entropy alloy superconductors: Status, opportunities, and challenges. Phys. Rev. Mater. 2019, 3, 090301. [Google Scholar] [CrossRef]
- Laurent-Brocq, M.; Perriere, I.; Pires, R.; Prima, F.; Vermant, P.; Champion, Y. From diluted solid solutions to high entropy alloys: On the evolution of properties with composition of multi-component alloys. Mat. Sci. Eng. A 2017, 696, 228–235. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Qi, L. Effects of electronic structures on mechanical properties of transition metals and alloys. Comput. Mater. Sci. 2019, 163, 11–16. [Google Scholar] [CrossRef]
- Babić, E.; Ristić, R.; Figueroa, I.A.; Pajić, D.; Skoko, Ž.; Zadro, K. Electronic structure and glass forming ability in early and late transition metal alloys. Phil. Mag. 2018, 98, 693–709. [Google Scholar] [CrossRef] [Green Version]
- Lužnik, J.; Koželj, P.; Vrtnik, S.; Jelen, A.; Jagličić, Z.; Meden, A.; Feuerbacher, M.; Dolinšek, J. Complex magnetism of Ho-Dy-Y-Gd-Tb hexagonal high-entropy alloy. Phys. Rev. B 2015, 92, 224201. [Google Scholar] [CrossRef]
- Mu, S.; Samolyuk, G.D.; Wimmer, S.; Troparevsky, M.C.; Khan, S.N.; Mankovsky, S.; Ebert, H.; Stocks, G.M. Uncovering electron scattering mechanisms in NiFeCoCrMn derived concentrated solid solution and high entropy alloys. NPJ Comput. Mater. 2019, 5, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Stocks, G.M.; Jin, K.; Lu, C.; Bei, H.; Sales, B.C.; Wang, L.; Béland, L.K.; Stoller, R.E.; Samolyuk, G.D.; et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 2015, 6, 8736. [Google Scholar] [CrossRef]
- Zuo, T.; Gao, M.C.; Ouyang, L.; Yang, X.; Cheng, Y.; Feng, R.; Chen, S.; Liaw, P.K.; Hawk, J.A.; Zhang, Y. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 2017, 130, 10–18. [Google Scholar] [CrossRef]
- Panahi, S.L.; Bruna, P.; Pineda, E. Effect of Si and B on the Electrochemical Behavior of FeCoNiCr-Based High-Entropy Amorphous Alloys. Materials 2022, 15, 8897. [Google Scholar] [CrossRef]
- Chong, K.; Gao, Y.; Zhang, Z.; Zou, Y.; Liang, X. Thermal stability and corrosion behavior of a novel Zr22.5Ti22.5Hf22.5Ni22.5Ta10 high-entropy amorphous alloy. Corr. Sci. 2023, 213, 110979. [Google Scholar] [CrossRef]
- Bracq, G.; Laurent-Brocq, M.; Perrière, L.; Pirès, R.; Joubert, J.-M.; Guillot, I. The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system. Acta Mater. 2017, 128, 327–336. [Google Scholar] [CrossRef]
- Bracq, G.; Laurent-Brocq, M.; Varvenne, C.; Perrière, L.; Curtin, W.; Joubert, J.-M.; Guillot, I. Combining experiments and modeling to explore the solid solution strengthening of high and medium entropy alloys. Acta Mater. 2019, 177, 266–279. [Google Scholar] [CrossRef]
- Laurent-Brocq, M.; Perrière, L.; Pirès, R.; Bracq, G.; Rieger, T.; Danard, Y.; Guillot, I. Combining tensile tests and nanoindentation to explore the strengthening of high and medium entropy alloys. Materialia 2019, 7, 100404. [Google Scholar] [CrossRef]
- Figueroa, I.A.; Zadro, K.; Ristić, R.; Pervan, P.; Valla, T.; Pletikosić, I.; Mikšić Trontl, V.; Babić, E. Unpublished. 2017.
- Takeuchi, A.; Wang, J.; Chen, N.; Zhang, W.; Yokoyama, Y.; Yubuta, K.; Zhu, S.L. Al0.5TiZrPgCuNi High-Entropy (H-E) alloy developed through Ti20Zr20Pd20Cu20Ni20 H-E glassy alloy comprising inter-transition metals. Mater. Trans. 2013, 54, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Nagase, T.; Takeuchi, A.; Amiya, K.; Egami, T. Solid state amorphization of metastable Al0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy. Mater. Chem. Phys. 2018, 210, 291–300. [Google Scholar] [CrossRef]
- Hüfner, S. Photoelectron Spectroscopy: Principles and Applications, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Damascelli, A.; Hussain, Z.; Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 2003, 75, 473–541. [Google Scholar] [CrossRef]
- Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters. Available online: https://vuo.elettra.eu/services/elements/WebElements.html (accessed on 20 October 2022).
- Seah, M.P.; Dench, A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979, 1, 2–11. [Google Scholar] [CrossRef]
- Oelhafen, P.; Hauser, E.; Güntherodt, H.-J. Varying d-band splitting in glassy transition metal alloys. Solid State Commun. 1980, 35, 1017–1019. [Google Scholar] [CrossRef]
- Amamou, A. d Band structure and alloying effects in crystalline and amorphous Zr-Co and Zr-Ni. Solid State Commun. 1980, 33, 1029–1034. [Google Scholar] [CrossRef]
- Giessen, B.; Madhava, M.; Polk, D.; Sande, J.V. Refractory amorphous inter-transition metal alloys. Mater. Sci. Eng. 1976, 23, 145–150. [Google Scholar] [CrossRef]
- Ristić, R.; Cooper, J.; Zadro, K.; Pajić, D.; Ivkov, J.; Babić, E. Ideal solution behaviour of glassy Cu–Ti, Zr, Hf alloys and properties of amorphous copper. J. Alloy. Compd. 2015, 621, 136–145. [Google Scholar] [CrossRef]
- Ristić, R.; Babić, E.; Šaub, K.; Miljak, M. Electrical and magnetic properties of amorphous Zr100-xCux alloys. Fizika 1983, 15, 363–373. [Google Scholar]
- Babić, E.; Ristić, R.; Miljak, M.; Scott, M.; Gregan, G. Superconductivity in zirconium-nickel glasses. Solid State Commun. 1981, 39, 139–141. [Google Scholar] [CrossRef]
- Ristić, R.; Babić, E. Magnetic susceptibility and atomic structure of paramagnetic Zr–(Co,Ni,Cu) amorphous alloys. J. Non-Crystalline Solids 2007, 353, 3108–3112. [Google Scholar] [CrossRef]
- Ristić, R.; Stubicar, M.; Babić, E. Correlation between mechanical, thermal and electronic properties in Zr–Ni, Cu amorphous alloys. Philos. Mag. 2007, 87, 5629–5637. [Google Scholar] [CrossRef]
- Ristić, R.; Babić, E.; Stubičar, M.; Kuršumović, A.; Cooper, J.R.; Figueroa, I.A.; Davies, H.A.; Todd, I.; Varga, L.K.; Bakonyi, I. Simple correlation between mechanical and thermal properties in TE–TL (TE=Ti,Zr,Hf;TL=Ni,Cu) amorphous alloys. J. Non-Cryst. Solids 2011, 357, 2949–2952. [Google Scholar] [CrossRef]
- Bakonyi, I. Atomic voliumes and local structure of metallic glasses. Acta Mater. 2005, 53, 2509–2520. [Google Scholar] [CrossRef]
- Altounian, Z.; Strom-Olsen, J.O. Superconductivity and spin fluctuations in M-Zr metallic glasses (M = Cu, Ni, Co and Fe). Phys. Rev. B 1983, 27, 4149–4156. [Google Scholar] [CrossRef]
- Tafra, E.; Basletić, M.; Ristić, R.; Babić, E.; Hamzić, A. Enhanced superconductivity in Hf-base metallic glasses. J. Phys. Condens. Matter 2008, 20, 425215. [Google Scholar] [CrossRef]
- Ristić, R.; Babić, E. Properties and atomic structure of amorphous zirconium. Fizika A 2005, 14, 97–106. [Google Scholar]
- Ristić, R.; Babić, E. Thermodynamic properties and atomic structure of amorphous zirconium. Mater. Sci. Eng. A 2007, 449–451, 569–572. [Google Scholar] [CrossRef]
- Bakonyi, I. Electronic properties and atomic structure of (Ti,Zr,Hf)-(Ni,Cu) metallic glasses. J. Non-Crystalline Solids 1995, 180, 131–150. [Google Scholar] [CrossRef]
- Ristić, R.; Babić, E. Why superconductivity in glassy zr-Co, Ni, Cu alloys does not scale with VEC? 2014. [Google Scholar]
- Nahm, T.-U.; Han, M.; Oh, S.-J.; Park, J.-H.; Allen, J.W.; Chung, S.-M. Partial spectral weights of disordered CuxPd1−x alloys including the photoemission matrix-element effect. Phys. Rev. B 1995, 51, 8140–8151. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef]
- Ivkov, J.; Babic, E.; Jacobs, R.L. Hall effect and electronic structure of glassy Zr 3d alloys. J. Phys. F Met. Phys. 1984, 14, L53–L57. [Google Scholar] [CrossRef]
- From, M.; Muir, W.B. Thermoelectric power of Fe-Zr and Co-Zr metallic glasses. Phys. Rev. B 1986, 33, 3736–3739. [Google Scholar] [CrossRef] [PubMed]
- Howson, M.A.; Gallagher, B.L. The electron transport properties of metallic glasses. Phys. Rep. 1988, 170, 265–324. [Google Scholar] [CrossRef]
- Mott, N.F. The electrical resistivity of liquid transition metals. Philos. Mag. 1972, 26, 1249–1261. [Google Scholar] [CrossRef]
- Pivac, B.; Babić, E. Thermoelectric power of FexNi80-xB20 alloys. In Recent Developments in Condensed Matter Physics; Devreese, J.T., Lemmens, L.F., von Doren, V.F., van Royen, J., Eds.; Plenum Press: New York, NY, USA, 1981; Volume 2, pp. 273–280. [Google Scholar]
- Kuveždić, M.; Tafra, E.; Figueroa, I.A.; Basletić, M. Magnetotransport properties of (TiZrNbNi)1−xCux and (TizrNbCu)1−xCox complex amorphous alloys. Materials 2022. to be submitted. [Google Scholar]
- Trontl, V.M.; Pervan, P.; Milun, M. Growth and electronic properties of ultra-thin Ag films on Ni(111). Surf. Sci. 2009, 603, 125–130. [Google Scholar] [CrossRef]
- Vegard, L. Die Konstitution der Mischkristalle und die Raumfullung der Atome. Z. Physik. 1921, 5, 17–26. [Google Scholar] [CrossRef]
- Denton, A.R.; Aschroft, N.W. Vegard’s law. Phys. Rev. A 1991, 43, 3161–3164. [Google Scholar] [CrossRef]
- Babić, E.; Figueroa, I.A.; Michalik, S.; Mikšić Trontl, V.; Pervan, P.; Ristić, R.; Salčinović-Fetić, A.; Starešinić, D.; Zadro, K. Influence of early transition metals on properties of Ti-Zr-Nb-Cu-Ni complex glassy alloys. 2023; Manuscript in preparation. [Google Scholar]
- Huang, S.; Holmström, E.; Eriksson, O.; Vitos, L. Mapping the magnetic transition temperatures for medium- and high-entropy alloys. Intermetallics 2018, 95, 80–84. [Google Scholar] [CrossRef]
- Kamarád, J.; Friák, M.; Kaštil, J.; Schneeweiss, O.; Šob, M.; Dlouhý, A. Effect of high pressure on magnetic properties of CrMnFeCoNi high entropy alloy. J. Magn. Mag. Mater. 2019, 487, 165333. [Google Scholar] [CrossRef]
- Na, S.-M.; Yoo, J.-H.; Lambert, P.K.; Jones, N.J. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys. AIP Adv. 2018, 8, 056412. [Google Scholar] [CrossRef] [Green Version]
- Pervan, P.; Mikšić Trontl, V.; Zadro, K.; Drobac, Đ.; Marohnić, Ž.; Laurent-Brocq, M.; Perrière, L.; Ristić, R.; Babić, E. Transition from the Cantor alloy to conventional Cr-Mn-Fe-Co-Ni alloys: Insight from UPS and magnetism. Forthcoming publication.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pervan, P.; Mikšić Trontl, V.; Figueroa, I.A.; Valla, T.; Pletikosić, I.; Babić, E. Compositionally Complex Alloys: Some Insights from Photoemission Spectroscopy. Materials 2023, 16, 1486. https://doi.org/10.3390/ma16041486
Pervan P, Mikšić Trontl V, Figueroa IA, Valla T, Pletikosić I, Babić E. Compositionally Complex Alloys: Some Insights from Photoemission Spectroscopy. Materials. 2023; 16(4):1486. https://doi.org/10.3390/ma16041486
Chicago/Turabian StylePervan, Petar, Vesna Mikšić Trontl, Ignacio Alejandro Figueroa, Tonica Valla, Ivo Pletikosić, and Emil Babić. 2023. "Compositionally Complex Alloys: Some Insights from Photoemission Spectroscopy" Materials 16, no. 4: 1486. https://doi.org/10.3390/ma16041486
APA StylePervan, P., Mikšić Trontl, V., Figueroa, I. A., Valla, T., Pletikosić, I., & Babić, E. (2023). Compositionally Complex Alloys: Some Insights from Photoemission Spectroscopy. Materials, 16(4), 1486. https://doi.org/10.3390/ma16041486