Ignimbrites Related to Neogene Volcanism in the Southeast of the Iberian Peninsula: An Experimental Study to Establish Their Pozzolanic Character
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Characterization Analysis of Mineral and Chemical Phases Using TSP, XRD, OA, SEM and XRF
2.2.2. Technical Characterization Analysis with QCA, PT, and MS
- [OH−]: is the concentration in hydroxyl ions (mmol/L).
- V3: is the volume of the hydrochloric acid solution (0.1 mol/L).
- f2: is the factor of the hydrochloric acid solution (0.1 mol/L).
- [CaO]: is the concentration in calcium oxide (mmol/L).
- V4: is the volume of the EDTA solution used in the titration.
- f1: is the factor of the EDTA solution.
3. Results and Discussion
3.1. Study by Thin Section Petrographic (TSP)
3.2. X-ray Diffraction (XRD)
3.3. Scanning Electron Microscopy (SEM)
3.4. Chemical Quality Analysis (QCA)
3.5. Pozzolanicity Test (PT)
3.6. Mechanical Compressive Strength (MS) at 7, 28 and 90 Days
4. Conclusions
- The samples studied have pozzolanic behavior, according to the results obtained by the pozzolanicity test, thus fulfilling the fundamental objective of this work.
- The samples have a mineral makeup that agrees with the mineralogy of the ignimbrites typical of the volcanic enclave of the Neogene, in the southeast of Spain, and are enriched with SiO2 and Al2O3 with a strong presence of chalco-alkaline compounds, which causes an evident tendency to pozzolanicity.
- It is established that both the chemical and mineralogical compositions of the samples studied are decisive factors for the manifestation of their pozzolanic properties.
- The specimens made with PC/IGNS-N and PC/IGNS-C substitutions of 10, 25 and 40% have mechanical strengths that increase from 7 to 90 days of curing.
- The increase in compressive strengths becomes more evident as the degree of fineness (B.P.F.) increases from 2000 to 5000 cm2/g, and when the PC/IGNS ratio remains between 10 and 25%.
- All specimens made with the PC:90%/IGNS:10% ratio have a Resistant Activity Index (RAI) above 75%, indicating that this formulation is the most suitable.
- The degree of calcination of the sample also has a positive impact on the pozzolanic reactivity.
- In order to increase profitability and quality in the production process, the parameters mentioned in the paragraph above should be taken into account, such as the degree of grinding, the degree of calcination and the dosing project of the PC/IGNS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hattatoglu, f.; Bakis, A. Usability of ignimbrite powder in reactive powder concrete road pavement. Road Mater. Pavement 2017, 18, 1448–1459. [Google Scholar] [CrossRef]
- Silva, J.C.; Milestone, N.B. The effect of the rock type on the degradation of well cements in CO2 enriched geothermal environments. Geothermics 2018, 75, 2018. [Google Scholar] [CrossRef]
- Silva, J.C.; Milestone, N.B. Cement/rock interaction in geothermal wells. The effect of silica addition to the cement and the impact of CO2 enriched brine. Geothermics 2018, 73, 16–31. [Google Scholar] [CrossRef]
- Sepúlveda, S.A.; Petley, D.N.; Brain, M.J.; Tunstall, N. The effect of dynamic loading on the shear strength of pyroclastic Ash Deposits and implications for landslide hazard: The case of Pudahuel Ignimbrite, Chile. Eng. Geol. 2016, 205, 54–61. [Google Scholar] [CrossRef]
- Laçin, D. Petrographical and chemical properties of building stone, plaster and mortar used in Güvercinkayası Settlement (Asia Minore): An overview of material usage habits in the Middle Chalcolithic period. Proc. Geol. Assoc. 2021, 132, 563–572. [Google Scholar] [CrossRef]
- Rispoli, C.; Graziano, S.F.; Di Benedetto, C.; De Bonis, A.; Guarino, V.; Esposito, R.; Morra, V.; Cappelletti, P. New Insights of Historical Mortars Beyond Pompei: The Example of Villa del Pezzolo, Sorrento Peninsula. Minerals 2019, 9, 575. [Google Scholar] [CrossRef]
- Binal, A. The determination of gel swelling pressure of reactive aggregates by ASGPM device and a new reactive-innocuous aggregate decision chart. Constr. Build. Mater. 2008, 22, 1–13. [Google Scholar] [CrossRef]
- Işik, E.; Bakiş, A.; Akilli, A.; Hattatoğlu, F. Usability of Ahlat Stone as Aggregate in Reactive Powder Concrete. Int. J. Appl. Eng. 2015, 4, 4. [Google Scholar]
- Izzo, F.; Arizzi, A.; Cappelletti, P.; Cultrone, G.; De Bonis, A.; Germinario, C.; Graziano, S.F.; Grifa, C.; Guarino, V.; Mercurio, M.; et al. The art of building in the Roman period (89 B.C.–79 A.D.): Mortars, plasters and mosaic floors from ancient Stabiae (Naples, Italy). Constr. Build. Mater. 2016, 117, 129–143. [Google Scholar] [CrossRef]
- Columbu, S.; Garau, A.M. Mineralogical, petrographic and chemical analysis of geomaterials used in the mortars of Roman Nora theatre (south Sardinia, Italy). Ital. J. Geosci. 2017, 136, 238–262. [Google Scholar] [CrossRef]
- Novembre, D.; Gimeno, D.; Cappelletti, P.; Graziano, S.F. A case study of zeolitization process: “Tufo Rosso a Scorie Nere” (Vico volcano, Italy): Inferences for a general model. Eur. J. Miner. 2021, 33, 315–328. [Google Scholar] [CrossRef]
- Costafreda, J.L. Geología, Caracterización y Aplicaciones de las Rocas Zeolíticas del Complejo Volcánico de Cabo de Gata (Almería). Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2008; 515p. [Google Scholar]
- Pelayo, M. Estudio del Yacimiento de Bentonita de Morrón de Mateo (Cabo de Gata, Almería) como Análogo natural del Comportamiento de la Barrera de arcilla de un Almacenamiento de Residuos Radiactivos. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2013; 311p. [Google Scholar]
- Pelayo, M.; García-Romero, E.; Labajo, M.A.; Pérez del Villar, L. Occurrence of Fe-Mg-rich smectites and corrensite in the Morrón de Mateo bentonite deposit (Cabo de Gata region, Spain): A natural analogue of the bentonite barrier in a radwaste repository. Appl. Geochem. 2011, 26, 1153–1168. [Google Scholar] [CrossRef]
- Google Earth. Available online: https://earth.google.com/web/@36.80741931,-2.07344191,33.6921129a,470.7201697d,35.00003704y,0.13360629h,0t,0r (accessed on 19 February 2022).
- UNE EN 197-1:2011.Cemento; Parte 1: Composición, Especificaciones y Criterios de Conformidad de los Cementos Comunes. AENOR: Madrid, Spain, 2011.
- UNE EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength; German version EN 196-1:2016. European Committee for Standardization: Brussels, Belgium, 2016.
- UNE EN 196-2:2014; Métodos de Ensayo de Cementos, Parte 2: Análisis Químico de Cementos. AENOR: Madrid, Spain, 2014.
- Idir, R.; Martin, C.; Tagnit-Hamou, A. Pozzolanic properties of fine and coarse color-mixed glass cullet. Cem. Concr. Compos. 2011, 33, 19–29. [Google Scholar] [CrossRef]
- Sánchez de Rojas, M.I.; Frías, M. Natural pozzolans in eco-efficient concrete. In Eco-Efficient Concrete; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, CA, USA, 2013; pp. 83–104. [Google Scholar] [CrossRef]
- UNE-EN 196-5:2011; Métodos de Ensayo de Cementos, Parte 5: Ensayo de Puzolanicidad para los Cementos Puzolánicos. AENOR: Madrid, Spain, 2011.
- UNE-EN 196-1:2018; Métodos de Ensayo de Cementos. Parte 1: Determinación de Resistencias. AENOR: Madrid, Spain, 2018.
- Hidalgo, S.; Soriano, L.; Monzó, J.; Payá, J.; Font, A.; Borrachero, M.V. Evaluation of Rice Straw Ash as a Pozzolanic Addition in Cementitious Mixtures. Appl. Sci. 2021, 11, 773. [Google Scholar] [CrossRef]
- Costafreda, J.L.; Martín, D.A.; Presa, L.; Parra, J.L. Altered volcanic tuffs from Los Frailes caldera. A study of their pozzolanic properties. Molecules 2021, 26, 5348. [Google Scholar] [CrossRef] [PubMed]
- Nurchasanah, Y. Characteristic of ‘Tulakan’ Soil as Natural Pozzolan to Substitute Portland Cement as Construction Material. Procedia Eng. 2013, 54, 764–773. [Google Scholar] [CrossRef]
- Raggiottia, B.B.; Positieria, M.J.; Oshiro, A. Natural zeolite, a pozzolan for structural concrete. Procedia Struct. Integr. 2018, 11, 36–43. [Google Scholar] [CrossRef]
- Lim, N.H.A.S.; Mohammadhosseini, H.; Tahir, M.M.; Samadi, M.; Sam, A.R.M. Microstructure and Strength Properties of Mortar Containing Waste Ceramic Nanoparticles. Arab J. Sci. Eng. 2018, 43, 5305–5313. [Google Scholar] [CrossRef]
- Bellil, A.; Aziz, A.; El Amrani El Hassani, I.-I.; Achab, M.; El Haddar, A.; Benzaouak, A. Producing of Lightweight Concrete from Two Varieties of Natural Pozzolan from the Middle Atlas (Morocco): Economic, Ecological, and Social Implications. Silicon 2021, 14, 4237–4248. [Google Scholar] [CrossRef]
- Terci, A.; Pezo, L.; Mijatović, N.; Stojanović, J.; Kragović, M.; Miličić, L.; Andrić, L. The effect of alternations in mineral additives (zeolite, bentonite, fly ash) on physico-chemical behavior of Portland cement based binders. Constr. Build. Mater. 2018, 180, 199–210. [Google Scholar] [CrossRef]
- Rosell-Lam, M.; Villar-Cociña, E.; Frías, M. Study on the pozzolanic properties of a natural Cuban zeolitic rock by conductimetric method: Kinetic parameters. Constr. Build. Mater. 2011, 25, 644–650. [Google Scholar] [CrossRef]
- Zhang, T.; Ling, Y.C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials—A review. Constr. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, P.; Qu, W. Basic Properties of Calcined Underground Ant Nest Materials and Its Influence on the Compressive Strength of Concrete. Materials 2019, 12, 1191. [Google Scholar] [CrossRef]
- Florez, C.; Restrepo-Baena, O.; Tobón, J. Effects of calcination and milling pre-treatments on natural zeolites as a supplementary cementitious material. Constr. Build. Mater. 2021, 310, 125220. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, S.; Lin, M.; Xia, Z.; Pei, Z.; Li, B. Influence of calcined coal-series kaolin fineness on properties of cement paste and mortar. Constr. Build. Mater. 2018, 171, 558–565. [Google Scholar] [CrossRef]
- Jaskulski, R.; Jóźwiak-Niedźwiedzka, D.; Yakymechko, Y. Calcined Clay as Supplementary Cementitious Material. Materials 2020, 13, 4734. [Google Scholar] [CrossRef]
Sample | Proportion (Ratios) | Temperature of Calcination (°C) | (B.P.F.) 6 (cm2/g) | |||
---|---|---|---|---|---|---|
PC 1:IGNS-N 2 (%) | PC: IGNS-C 3 (%) | NS 4 (g) | DW 5 (g) | |||
IGNS-N-01 | 90:10 | - | 1.350 | 225 | - | 2000 |
IGNS-N-02 | 75:25 | |||||
IGNS-N-03 | 60:40 | |||||
IGNS-N-04 | 90:10 | 5000 | ||||
IGNS-N-05 | 75:25 | |||||
IGNS-N-06 | 60:40 | |||||
IGNS-C-01 | - | 90:10 | 1.350 | 225 | 900 | 2000 |
IGNS-C-02 | 75:25 | |||||
IGNS-C-03 | 60:40 | |||||
IGNS-C-04 | 90:10 | 5000 | ||||
IGNS-C-05 | 75:25 | |||||
IGNS-C-06 | 60:40 |
% Weight | Samples | Allowed Levels (%) | |
---|---|---|---|
IGNS-N | IGNS-C | ||
Total SiO2 | 64.49 | 66.09 | - |
MgO | 2.22 | 2.29 | <5 |
Total CaO | 4.32 | 4.46 | - |
Fe2O3 | 3.59 | 3.69 | - |
Al2O3 | 15.65 | 15.87 | <16 |
Reactive SiO2 | 20.28 | 19.28 | >25 |
Reactive CaO | 3.82 | 4.22 | - |
Insoluble Residue | 61.97 | 67.09 | <3 |
Loss on Ignition (LOI) | 2.76 | 0.43 | - |
SiO2/(CaO + MgO) | 10.70 | 10.20 | >3.5 |
SO3 | 0.038 | 0.013 | <4 |
Chlorides | 0.021 | 0.008 | <0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, D.A.; Costafreda, J.L.; Presa, L.; Crespo, E.; Parra, J.L.; Astudillo, B.; Sanjuán, M.Á. Ignimbrites Related to Neogene Volcanism in the Southeast of the Iberian Peninsula: An Experimental Study to Establish Their Pozzolanic Character. Materials 2023, 16, 1546. https://doi.org/10.3390/ma16041546
Martín DA, Costafreda JL, Presa L, Crespo E, Parra JL, Astudillo B, Sanjuán MÁ. Ignimbrites Related to Neogene Volcanism in the Southeast of the Iberian Peninsula: An Experimental Study to Establish Their Pozzolanic Character. Materials. 2023; 16(4):1546. https://doi.org/10.3390/ma16041546
Chicago/Turabian StyleMartín, Domingo A., Jorge L. Costafreda, Leticia Presa, Elena Crespo, José Luis Parra, Beatriz Astudillo, and Miguel Ángel Sanjuán. 2023. "Ignimbrites Related to Neogene Volcanism in the Southeast of the Iberian Peninsula: An Experimental Study to Establish Their Pozzolanic Character" Materials 16, no. 4: 1546. https://doi.org/10.3390/ma16041546
APA StyleMartín, D. A., Costafreda, J. L., Presa, L., Crespo, E., Parra, J. L., Astudillo, B., & Sanjuán, M. Á. (2023). Ignimbrites Related to Neogene Volcanism in the Southeast of the Iberian Peninsula: An Experimental Study to Establish Their Pozzolanic Character. Materials, 16(4), 1546. https://doi.org/10.3390/ma16041546