Microstructural Evolution and Mechanical Performance of Two Joints of Medium-Mn Stainless Steel with Low- and High-Alloyed Steels
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Base Metals (BMs)
2.2. Welding Experiment
2.3. Microstructure Characterization
2.4. Mechanical Properties
3. Results
3.1. Microstructure of the BMs
3.2. Microstructural Characteristics of the Welded Joints
3.2.1. Dissimilar Welded Joint of MMn–SS and NiCr–SS (MMn–SS/NiCr–SS)
3.2.2. Dissimilar Welded Joint of MMn–SS and LCS (MMn–SS/LCS)
3.3. Mechanical Properties of MMn–SS Weld Joints
4. Discussion
4.1. Thermo-Calc Analysis of the Predicted Phases in the FZ
4.2. Characteristics of δ-Ferrite in the FZs
4.3. Appearance of the TZ
4.4. Evolution of Micro-Indentation Hardness Values
5. Conclusions
- The microstructures of the FZs for both joints comprised mainly austenite matrix and a small fraction of δ-ferrite (3.5~5.7%);
- Sensitization was promoted in the HAZ of the stainless steels; hence, Cr carbides were precipitated on the grain boundaries of the austenite matrix;
- The tensile strength of the dissimilar MMn–SS joint with NiCr–SS (610 MPa) was significantly higher than that of its counterpart joint of MMn–SS with LCS (340 MPa), since the flow stress curve of the joint was similar to that of the BM LCS, which was the weaker metal in the joint;
- The micro-indentation hardness values of the FZs in the MMn–SS joints with NiCr–SS and LCS were 2.18 and 1.85 GPa, respectively. This was attributed to the greater strengthening of the solid solution achieved by combing the alloying elements (Ni, Cr, and Fe).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, Y.; Han, S.; Li, X.; Wang, C.; Zheng, G.; Dong, H. Effect of shearing clearance on formability of sheared edge of the third-generation automotive medium-Mn steel with metastable austenite. J. Mater. Process. Technol. 2018, 259, 216–227. [Google Scholar] [CrossRef]
- Li, T.; Yan, S.; An, D.; Li, X.; Chen, J. Austenite transformation associated with δ-ferrite phase in a medium-Mn steel after cold-rolling and intercritical annealing. J. Mater. Process. Technol. 2022, 306, 117632. [Google Scholar] [CrossRef]
- Hamada, A.; Karjalainen, L.; Misra, R.; Talonen, J. Contribution of deformation mechanisms to strength and ductility in two Cr–Mn grade austenitic stainless steels. Mater. Sci. Eng. A 2013, 559, 336–344. [Google Scholar] [CrossRef]
- Kisko, A.; Hamada, A.; Talonen, J.; Porter, D.; Karjalainen, L. Effects of reversion and recrystallization on microstructure and mechanical properties of Nb-alloyed low-Ni high-Mn austenitic stainless steels. Mater. Sci. Eng. A 2016, 657, 359–370. [Google Scholar] [CrossRef]
- Hamada, A.; Kisko, A.; Sahu, P.; Karjalainen, L. Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing. Mater. Sci. Eng. A 2015, 628, 154–159. [Google Scholar] [CrossRef]
- Chuaiphan, W.; Srijaroenpramong, L. Optimization of TIG welding parameter in dissimilar joints of low nickel stainless steel AISI 205 and AISI 216. J. Manuf. Process. 2020, 58, 163–178. [Google Scholar] [CrossRef]
- Vashishtha, H.; Taiwade, R.V.; Khatirkar, R.; Ingle, A.; Dayal, R.K. Welding Behaviour of Low Nickel Chrome-Manganese Stainless Steel. ISIJ Int. 2014, 54, 1361–1367. [Google Scholar] [CrossRef] [Green Version]
- Chuaiphan, W.; Srijaroenpramong, L. Optimization of gas tungsten arc welding parameters for the dissimilar welding between AISI 304 and AISI 201 stainless steels. Def. Technol. 2019, 15, 170–178. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, C.; Chen, C.; Ming, Z.; Yang, C.; Lin, S.; Wang, L. Design and evaluation of nitrogen-rich welding wires for high nitrogen stainless steel. J. Mater. Process. Technol. 2020, 288, 116885. [Google Scholar] [CrossRef]
- Hamada, A.; Ali, M.; Ghosh, S.; Jaskari, M.; Keskitalo, M.; Järvenpää, A. Mechanical performance and formability of laser-welded dissimilar butt joints between medium-Mn stainless steel and high-strength carbon steel. Mater. Sci. Eng. A 2021, 831, 142200. [Google Scholar] [CrossRef]
- Vashishtha, H.; Taiwade, R.V.; Sharma, S.; Marodkar, A.S. Microstructural and Mechanical Properties Evolution of Bimetallic Cr-Ni and Cr-Mn-Ni Stainless Steel Joints. Met. Microstruct. Anal. 2019, 8, 359–369. [Google Scholar] [CrossRef]
- Allam, T.; Guo, X.; Lipińska-Chwałek, M.; Hamada, A.; Ahmed, E.; Bleck, W. Impact of precipitates on the hydrogen embrittlement behavior of a V-alloyed medium-manganese austenitic stainless steel. J. Mater. Res. Technol. 2020, 9, 13524–13538. [Google Scholar] [CrossRef]
- Hamada, A.; Kömi, J. Effect of microstructure on mechanical properties of a novel high-Mn TWIP stainless steel bearing vanadium. Mater. Sci. Eng. A 2018, 718, 301–304. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Chandiran, E.; Dong, H.-K.; Kamikawa, N.; Miyamoto, G.; Furuhara, T. Current Understanding of Microstructure and Properties of Micro-Alloyed Low Carbon Steels Strengthened by Interphase Precipitation of Nano-Sized Alloy Carbides: A Review. Jom 2021, 73, 3214–3227. [Google Scholar] [CrossRef]
- Tümer, M.; Schneider-Bröskamp, C.; Enzinger, N. Fusion welding of ultra-high strength structural steels—A review. J. Manuf. Process. 2022, 82, 203–229. [Google Scholar] [CrossRef]
- Mirshekari, G.; Tavakoli, E.; Atapour, M.; Sadeghian, B. Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel. Mater. Des. 2014, 55, 905–911. [Google Scholar] [CrossRef]
- Bansod, A.V.; Patil, A.P.; Moon, A.P.; Shukla, S. Microstructural and Electrochemical Evaluation of Fusion Welded Low-Nickel and 304 SS at Different Heat Input. J. Mater. Eng. Perform. 2017, 26, 5847–5863. [Google Scholar] [CrossRef]
- Chuaiphan, W.; Srijaroenpramong, L. Microstructure, mechanical properties and pitting corrosion of TIG weld joints alternative low-cost austenitic stainless steel grade 216. J. Adv. Join. Process. 2020, 2, 100027. [Google Scholar] [CrossRef]
- Tandon, V.; Thombre, M.A.; Patil, A.P.; Taiwade, R.V.; Vashishtha, H. Effect of Heat Input on the Microstructural, Mechanical, and Corrosion Properties of Dissimilar Weldment of Conventional Austenitic Stainless Steel and Low-Nickel Stainless Steel. Met. Microstruct. Anal. 2020, 9, 668–677. [Google Scholar] [CrossRef]
- Vashishtha, H.; Taiwade, R.V.; Sharma, S.; Patil, A.P. Effect of welding processes on microstructural and mechanical properties of dissimilar weldments between conventional austenitic and high nitrogen austenitic stainless steels. J. Manuf. Process. 2017, 25, 49–59. [Google Scholar] [CrossRef]
- Ibrahim, I.R.; Khedr, M.; Mahmoud, T.S.; Abdel-Aleem, H.A.; Hamada, A. Study on the Mechanical Performance of Dissimilar Butt Joints between Low Ni Medium-Mn and Ni-Cr Austenitic Stainless Steels Processed by Gas Tungsten Arc Welding. Metals 2021, 11, 1439. [Google Scholar] [CrossRef]
- Hamada, A.; Ghosh, S.; Ali, M.; Jaskari, M.; Järvenpää, A. Studying the strengthening mechanisms and mechanical properties of dissimilar laser-welded butt joints of medium-Mn stainless steel and automotive high-strength carbon steel. Mater. Sci. Eng. A 2022, 856, 143936. [Google Scholar] [CrossRef]
- Jang, A.; Lee, D.; Lee, S.; Shim, J.; Kang, S.; Lee, H. Effect of Cr/Ni equivalent ratio on ductility-dip cracking in AISI 316L weld metals. Mater. Des. 2011, 32, 371–376. [Google Scholar] [CrossRef]
- Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Sundaresan, S. Solidification cracking in austenitic stainless steel welds. Sadhana 2003, 28, 359–382. [Google Scholar] [CrossRef]
- Lu, B.; Chen, Z.; Luo, J.; Patchett, B.; Xu, Z. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochim. Acta 2005, 50, 1391–1403. [Google Scholar] [CrossRef]
- Nagasai, B.P.; Malarvizhi, S.; Balasubramanian, V. Mechanical properties and microstructural characteristics of wire arc additive manufactured 308 L stainless steel cylindrical components made by gas metal arc and cold metal transfer arc welding processes. J. Mater. Process. Technol. 2022, 307, 117655. [Google Scholar] [CrossRef]
- Kshirsagar, R.; Jones, S.; Lawrence, J.; Tabor, J. Measurement of ferrite content of stainless steel sheet welds using a new Ferrite Density Number scale. J. Mater. Process. Technol. 2019, 274, 116278. [Google Scholar] [CrossRef]
- Bhanu, V.; Gupta, A.; Pandey, C. Role of A-TIG process in joining of martensitic and austenitic steels for ultra-supercritical power plants–A state of the art review. Nuclear Eng. Technol. 2022, 54, 2755–2770. [Google Scholar] [CrossRef]
- Weman, K. (Ed.) 1—Introduction to welding. In Welding Processes Handbook, 2nd ed.; Woodhead Publishing: Sawston, UK, 2012; pp. 1–12. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- ASTM E8/E8M; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2021.
- Tian, Y.; Lin, S.; Ko, J.P.; Lienert, U.; Borgenstam, A.; Hedström, P. Micromechanics and microstructure evolution during in situ uniaxial tensile loading of TRIP-assisted duplex stainless steels. Mater. Sci. Eng. A 2018, 734, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Baghdadchi, A.; Hosseini, V.A.; Karlsson, L. Identification and quantification of martensite in ferritic-austenitic stainless steels and welds. J. Mater. Res. Technol. 2021, 15, 3610–3621. [Google Scholar] [CrossRef]
- Walentek, A.; Seefeldt, M.; Verlinden, B.; Aernoudt, E.; VAN Houtte, P. Electron backscatter diffraction on pearlite structures in steel. J. Microsc. 2006, 224, 256–263. [Google Scholar] [CrossRef]
- Hietala, M.; Ali, M.; Khosravifard, A.; Keskitalo, M.; Järvenpää, A.; Hamada, A. Optimization of the tensile-shear strength of laser-welded lap joints of ultra-high strength abrasion resistance steel. J. Mater. Res. Technol. 2021, 11, 1434–1442. [Google Scholar] [CrossRef]
- Sabzi, M.; Anijdan, S.M.; Chalandar, A.B.; Park, N.; Jafarian, H.; Eivani, A. An experimental investigation on the effect of gas tungsten arc welding current modes upon the microstructure, mechanical, and fractography properties of welded joints of two grades of AISI 316L and AISI310S alloy metal sheets. Mater. Sci. Eng. A 2022, 840, 142877. [Google Scholar] [CrossRef]
- Khedr, M.; Wei, L.; Na, M.; Yu, L.; Xuejun, J. Evolution of Fracture Mode in Nano-twinned Fe-1.1C-12.5Mn Steel. Jom 2019, 71, 1338–1348. [Google Scholar] [CrossRef]
- Drozdenko, D.; Bohlen, J.; Yi, S.; Minárik, P.; Chmelík, F.; Dobroň, P. Investigating a twinning–detwinning process in wrought Mg alloys by the acoustic emission technique. Acta Mater. 2016, 110, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Kurz, W.; Bezençon, C.; Gäumann, M. Columnar to equiaxed transition in solidification processing. Sci. Technol. Adv. Mater. 2001, 2, 185–191. [Google Scholar] [CrossRef]
- Dak, G.; Pandey, S.M.; Pandey, C. Residual stress analysis, microstructural characterization, and mechanical properties of tungsten inert gas-welded P92/AISI 304L dissimilar steel joints. Proc. Inst. Mech. Eng. Part L J. Mater.: Des. Appl. 2022. [Google Scholar] [CrossRef]
- Teng, T.-L.; Chang, P.-H.; Tseng, W.-C. Effect of welding sequences on residual stresses. Comput. Struct. 2003, 81, 273–286. [Google Scholar] [CrossRef]
- Chuaiphan, W.; Somrerk, C.A.; Niltawach, S.; Sornil, B. Dissimilar Welding between AISI 304 Stainless Steel and AISI 1020 Carbon Steel Plates. Appl. Mech. Mater. 2012, 268–270, 283–290. [Google Scholar] [CrossRef]
- Khidhir, G.I.; Baban, S.A. Efficiency of dissimilar friction welded 1045 medium carbon steel and 316L austenitic stainless steel joints. J. Mater. Res. Technol. 2019, 8, 1926–1932. [Google Scholar] [CrossRef]
- Newbury, D.E.; Ritchie, N.W.M. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J. Mater. Sci. 2014, 50, 493–518. [Google Scholar] [CrossRef] [Green Version]
- Newbury, D.E.; Ritchie, N.W.M. Is Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDS) Quantitative? Scanning 2012, 35, 141–168. [Google Scholar] [CrossRef]
- El-Bitar, T.; El-Meligy, M.; Khedr, M. Investigation of exhaust valve failure in a marine diesel engine. Eng. Fail. Anal. 2020, 114, 104574. [Google Scholar] [CrossRef]
- Uranga, P.; Shang, C.-J.; Senuma, T.; Yang, J.-R.; Guo, A.-M.; Mohrbacher, H. Molybdenum alloying in high-performance flat-rolled steel grades. Adv. Manuf. 2020, 8, 15–34. [Google Scholar] [CrossRef] [Green Version]
- Abioye, T.; Ariwoola, O.E.; Ogedengbe, T.; Farayibi, P.K.; Gbadeyan, O. Effects of Welding Speed on the Microstructure and Corrosion Behavior of Dissimilar Gas Metal Arc Weld Joints of AISI 304 Stainless Steel and Low Carbon Steel. Mater. Today: Proc. 2019, 17, 871–877. [Google Scholar] [CrossRef]
- Kolubaev, A.; Sizova, O.; Fortuna, S.; Vorontsov, A.; Ivanov, A.; Kolubaev, E. Weld structure of low-carbon structural steel formed by ultrasonic-assisted laser welding. J. Constr. Steel Res. 2020, 172, 106190. [Google Scholar] [CrossRef]
- Gajjar, P.K.; Khatri, B.C.; Siddhpura, A.M.; Siddhpura, M.A. Sensitization and Desensitization (Healing) in Austenitic Stainless Steel: A Critical Review. Trans. Indian Inst. Met. 2022, 75, 1411–1427. [Google Scholar] [CrossRef]
- Doerr, C.; Kim, J.-Y.; Singh, P.; Wall, J.J.; Jacobs, L.J. Evaluation of sensitization in stainless steel 304 and 304L using nonlinear Rayleigh waves. NDT E Int. 2017, 88, 17–23. [Google Scholar] [CrossRef]
- Zhao, B.; Dai, Q.; Zhao, Z.J.; He, M.; Wang, L.X.; Zhang, G.H. Study on Grain Boundary Sensitization in Heat Affected Zone of Austenitic Stainless Steel and its Evaluation Method. Mater. Sci. Forum 2022, 1066, 65–69. [Google Scholar] [CrossRef]
- Devine, T. The mechanism of sensitization of austenitic stainless steel. Corros. Sci. 1990, 30, 135–151. [Google Scholar] [CrossRef]
- Maity, J. An analytical model of grain growth considering the conjoint effects of precipitate pinning and solute drag in steel. Philos. Mag. Lett. 2022, 102, 307–323. [Google Scholar] [CrossRef]
- Oikawa, T.; Zhang, J.J.; Enomoto, M.; Adachi, Y. Influence of Carbide Particles on the Grain Growth of Ferrite in an Fe–0.1C–0.09V Alloy. ISIJ Int. 2013, 53, 1245–1252. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; He, Y.; Liu, J.; Cui, H.; Qiu, S.; Zhang, P.; Zheng, G. Phase transformation and microstructure evolution of pearlite heat-resistant steel during heating. Mater. Sci. Technol. 2020, 36, 771–782. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Zhang, C.; Wang, Z. Numerical Simulation and Experimental Investigation on Electron Beam Welding of Spray-Formed 7055 Aluminum Alloy. Metals 2020, 10, 1392. [Google Scholar] [CrossRef]
- Nikulina, A.; Smirnov, A.; Chevakinskaya, A. Formation of a Transition Zone Structure in Welded Joints between Dissimilar Steels. Appl. Mech. Mater. 2014, 698, 283–287. [Google Scholar] [CrossRef]
- Başyiğit, A.B.; Kurt, A. The Effects of Nitrogen Gas on Microstructural and Mechanical Properties of TIG Welded S32205 Duplex Stainless Steel. Metals 2018, 8, 226. [Google Scholar] [CrossRef] [Green Version]
- Karimi, A.; Karimipour, A.; Akbari, M.; Razzaghi, M.M.; Ghahderijani, M.J. Investigating the mechanical properties and fusion zone microstructure of dissimilar laser weld joint of duplex 2205 stainless steel and A516 carbon steel. Opt. Laser Technol. 2023, 158, 108875. [Google Scholar] [CrossRef]
Materials | Elements (Weight%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | Cr | Ni | Mo | Cu | V | N | Nb | Fe | |
MMn–SS | 0.098 | 0.15 | 9.57 | 14.60 | 1.26 | 0.031 | 1.43 | 0.06 | 0.20 | 0.043 | Bal. |
NiCr–SS | 0.025 | 0.42 | 1.12 | 18.70 | 7.80 | 0.001 | 0.014 | 0.12 | 0.10 | 0.051 | Bal. |
LCS | 0.053 | 0.04 | 0.37 | 0.025 | 0.03 | 0.005 | 0.09 | 0.001 | - | 0.001 | Bal. |
ER308L | 0.02 | 0.40 | 1.90 | 19.80 | 9.80 | 0.20 | 0.15 | - | - | - | Bal. |
ER309MoL | 0.01 | 0.40 | 1.50 | 22.00 | 14.80 | 2.50 | 0.12 | - | - | - | Bal. |
Welded Joint | Pass | Current (A) | Voltage (V) | Welding Speed (mm/s) | Heat Input per Pass (kJ/mm) | Total Heat Input (kJ/mm) |
---|---|---|---|---|---|---|
MMn–SS/NiCr–SS | Root | 70 | 12.5 | 2.6 | 0.202 | 0.486 |
Cup | 110 | 12.5 | 2.9 | 0.284 | ||
MMn–SS/LCS | Root | 70 | 12.5 | 1.7 | 0.309 | 0.604 |
Cup | 110 | 12.5 | 2.8 | 0.295 |
Materials | Tensile Properties | Location of Fracture | |||
---|---|---|---|---|---|
Yield (MPa) | Ultimate (MPa) | Elongation (%) | Joint Efficiency (%) | ||
MMn–SS | 420 ± 13 | 915 ± 15 | 54 ± 5 | - | Gauge length |
NiCr–SS | 320 ± 10 | 738 ± 17 | 52 ± 2 | - | Gauge length |
LCS | 303 ± 7 | 360 ± 8 | 22 ± 3 | - | Gauge length |
MMn–SS/NiCr–SS | 340 ± 8 | 610 ± 10 | 18 ± 2 | 82 | Weld metal |
MMn–SS/LCS | 280 ± 6 | 340 ± 5 | 16 ± 1 | 95 | LCS-BM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khedr, M.; Ibrahim, I.R.; Jaskari, M.; Ali, M.; Abdel-Aleem, H.A.; Mahmoud, T.S.; Hamada, A. Microstructural Evolution and Mechanical Performance of Two Joints of Medium-Mn Stainless Steel with Low- and High-Alloyed Steels. Materials 2023, 16, 1624. https://doi.org/10.3390/ma16041624
Khedr M, Ibrahim IR, Jaskari M, Ali M, Abdel-Aleem HA, Mahmoud TS, Hamada A. Microstructural Evolution and Mechanical Performance of Two Joints of Medium-Mn Stainless Steel with Low- and High-Alloyed Steels. Materials. 2023; 16(4):1624. https://doi.org/10.3390/ma16041624
Chicago/Turabian StyleKhedr, Mahmoud, I. Reda Ibrahim, Matias Jaskari, Mohammed Ali, Hamed A. Abdel-Aleem, Tamer S. Mahmoud, and Atef Hamada. 2023. "Microstructural Evolution and Mechanical Performance of Two Joints of Medium-Mn Stainless Steel with Low- and High-Alloyed Steels" Materials 16, no. 4: 1624. https://doi.org/10.3390/ma16041624
APA StyleKhedr, M., Ibrahim, I. R., Jaskari, M., Ali, M., Abdel-Aleem, H. A., Mahmoud, T. S., & Hamada, A. (2023). Microstructural Evolution and Mechanical Performance of Two Joints of Medium-Mn Stainless Steel with Low- and High-Alloyed Steels. Materials, 16(4), 1624. https://doi.org/10.3390/ma16041624