Effects of Riboflavin Collagen Crosslinker on Dentin Adhesive Bonding Efficiency: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- P = Sectioned dentin from extracted human teeth
- I = Teeth modified with UVA/Blue light/photoactivated Riboflavin as a crosslinker for the dentinal bond.
- C = Teeth modified without the use of Riboflavin crosslinker
- O = Micro tensile bond strength
2.2. Eligibility Criteria
2.3. Research Question
2.4. Information Sources
2.5. Search and Study Selection
2.6. Data Collection
2.7. Search Item (Data Extraction)
2.8. Meta-Analysis Criteria
- (i)
- All vitro studies used 0.1% photoactivated riboflavin as a collagen crosslinker which is considered a case group.
- (ii)
- Studies used a control group without the presence of riboflavin.
- (iii)
- Micro tensile strength has been reported during the evaluation of dentin bonding.
- (iv)
- Micro tensile strength has been compared between the case and control group
- (v)
- Sample size and mean (SD) of microtensile bond strength has been reported for both case and control group
- (vi)
- Micro tensile bond strength has been assessed after both immediate (24 h) and long-term (6 months) storage duration
- (vii)
- Distilled water or saliva has been used as storage media.
3. Reporting Biases
Synthesis of Results
4. Results
4.1. Study Selection
4.2. Synthesis of Meta-Analysis
4.3. Subgroup Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melms, H.; Herrmann, M.; Förstner, K.; Bharti, R.; Schneider, D.; Mentrup, B.; Rudert, M.; Schlagenhauf, U.; Jakob, F.; Graser, S. Novel molecular cues for dental defects in hypophosphatasia. Exp. Cell Res. 2020, 392, 112026. [Google Scholar] [CrossRef] [PubMed]
- Vadini, M.; De Angelis, F.; D’Amario, M.; D’Arcangelo, C. Direct pulp capping with an adhesive system in management of a complicated incisor fracture: A three-year follow-up case report. G. Ital. Endod. 2011, 25, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Shu, C.; Wang, C.; Shi, M.; Xu, J.; Luo, Q.; Wu, M.; Chen, Y.; Li, X. Bonding effectiveness of the universal adhesive on caries-affected dentin of deciduous teeth. Materialia 2020, 14, 100885. [Google Scholar] [CrossRef]
- Fugolin, A.P.; Lewis, S.; Logan, M.G.; Ferracane, J.L.; Pfeifer, C.S. Methacrylamide–methacrylate hybrid monomers for dental applications. Dent. Mater. 2020, 36, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, A.; Breschi, L.; Turco, G.; Marchesi, G.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Cadenaro, M. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability—A literature review. Dent. Mater. 2015, 32, e41–e53. [Google Scholar] [CrossRef]
- Stape, T.H.; Tjaderhane, L.; Marques, M.R.; Aguiar, F.H.; Martins, L.R. Effect of dimethyl sulfoxide wet-bonding technique on hybrid layer quality and dentin bond strength. Dent. Mater. 2015, 31, 676–683. [Google Scholar] [CrossRef]
- Tjäderhane, L.; Nascimento, F.D.; Breschi, L.; Mazzoni, A.; Tersariol, I.L.; Geraldeli, S.; Tezvergil-Mutluay, A.; Carrilho, M.; Carvalho, R.M.; Tay, F.R.; et al. Strategies to prevent hydrolytic degradation of the hybrid layer—A review. Dent. Mater. 2013, 29, 999–1011. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Yi, L.; Wang, Z.; Yang, H.; Huang, C. Effects of resveratrol/ethanol pretreatment on dentin bonding durability. Mater. Sci. Eng. C 2020, 114, 111000. [Google Scholar] [CrossRef]
- Cardenas, A.F.M.; de Siqueira, F.S.F.; Bandeca, M.C.; Feitosa, V.P.; Reis, A.; Loguercio, A.D.; Gomes, J.C. Effect of pH and application times of a meta-phosphoric acid on resin-dentin bonding properties. Int. J. Adhes. Adhes. 2016, 74, 107–114. [Google Scholar] [CrossRef]
- Pashley, D.; Tay, F.; Yiu, C.; Hashimoto, M.; Breschi, L.; Carvalho, R.; Ito, S. Collagen Degradation by Host-derived Enzymes during Aging. J. Dent. Res. 2004, 83, 216–221. [Google Scholar] [CrossRef]
- Mazzoni, A.; Pashley, D.H.; Tay, F.R.; Gobbi, P.; Orsini, G.; Ruggeri, A. Immunohistochemical identification of MMP-2 and MMP-9 in human dentin: Correlative FEI-SEM/TEM analysis. J. Biomed Mater. Res. A 2009, 88, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Cadenaro, M.; Maravic, T.; Comba, A.; Mazzoni, A.; Fanfoni, L.; Hilton, T.; Ferracane, J.; Breschi, L. The role of polymerization in adhesive dentistry. Dent. Mater. 2019, 35, e1–e22. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Mazzoni, A.; Gou, Y.; Pucci, C.; Breschi, L.; Pashley, D.; Niu, L.; Tay, F. Zymography of Hybrid Layers Created Using Extrafibrillar Demineralization. J. Dent. Res. 2018, 97, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Meerbeek, B.; Van Landuyt, K. From Buonocore’s pioneering acid-etch technique to self-adhering restoratives. A status perspective of rapidly advancing dental adhesive technology. J. Adhes Dent. 2020, 22, 7–34. [Google Scholar] [PubMed]
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjäderhane, L.; Pashley, D.H.; Tay, F.R.; Mazzoni, A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent. Mater. 2018, 34, 78–96. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Beitzel, D.; Mutluay, M.; Tay, F.R.; Pashley, D.H.; Arola, D. On the durability of resin–dentin bonds: Identifying the weakest links. Dent. Mater. 2015, 31, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Fawzy, A.S.; Nitisusanta, L.I.; Iqbal, K.; Daood, U.; Neo, J. Riboflavin as a dentin crosslinking agent: Ultraviolet A versus blue light. Dent. Mater. 2012, 28, 1284–1291. [Google Scholar] [CrossRef]
- Fawzy, A.S.; Nitisusanta, L.I.; Iqbal, K.; Daood, U.; Beng, L.T.; Neo, J. Chitosan/Riboflavin-modified demineralized dentin as a potential substrate for bonding. J. Mech. Behav. Biomed. Mater. 2013, 17, 278–289. [Google Scholar] [CrossRef]
- Kishen, A.; Shrestha, S.; Shrestha, A.; Cheng, C.; Goh, C. Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation. Dent. Mater. 2016, 32, 968–977. [Google Scholar] [CrossRef]
- Wollensak, G.; Spoerl, E.; Seiler, T. Stress-strain measurements of human and porcine corneas after riboflavin–ultraviolet-A-induced cross-linking. J. Cataract. Refract. Surg. 2003, 29, 1780–1785. [Google Scholar] [CrossRef]
- Wollensak, G. Crosslinking treatment of progressive keratoconus: New hope. Curr. Opin. Ophthalmol. 2006, 17, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Ashwin, P.T.; McDonnell, P.J. Collagen cross-linkage: A comprehensive review and directions for future research. Br. J. Ophthalmol. 2009, 94, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Cova, A.; Breschi, L.; Nato, F.; Ruggeri, A., Jr.; Carrilho, M.; Tjaderhane, L.; Prati, C.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; et al. Effect of UVA-activated riboflavin on dentin bonding. J. Dent. Res. 2011, 90, 1439–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daood, U.; Sauro, S.; Pichika, M.R.; Omar, H.; Lin, S.L.; Fawzy, A. Novel riboflavin/VE-TPGS modified universal dentine adhesive with superior dentine bond strength and self-crosslinking potential. Dent. Mater. 2020, 36, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Daood, U.; Balasankar, M.P.; Ibrahim, M.A.; Pichika, M.R.; Mak, K.-K.; Fawzy, A.S. PLGA nanoparticles loaded with quaternary ammonium silane and riboflavin for potential applications in adhesive dentistry. Int. J. Adhes. Adhes. 2021, 105, 102797. [Google Scholar] [CrossRef]
- Fu, C.; Deng, S.; Koneski, I.; Awad, M.; Akram, Z.; Matinlinna, J.; Pichika, M.R.; Daood, U.; Fawzy, A. Multiscale in-vitro analysis of photo-activated riboflavin incorporated in an experimental universal adhesive. J. Mech. Behav. Biomed. Mater. 2020, 112, 104082. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0; The Cochrane Collaboration: London, UK, 2011; Available online: http://handbook.cochrane.org (accessed on 6 February 2023).
- Sheth, V.H.; Shah, N.P.; Jain, R.; Bhanushali, N.; Bhatnagar, V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN. J. Prosthet. Dent. 2022, 22, S0022-3913(22)00345-356. [Google Scholar] [CrossRef]
- Chiang, Y.-S.; Chen, Y.-L.; Chuang, S.-F.; Wu, C.-M.; Wei, P.-J.; Han, C.-F.; Lin, J.-C.; Chang, H.-T. Riboflavin-ultraviolet-A-induced collagen cross-linking treatments in improving dentin bonding. Dent. Mater. 2013, 29, 682–692. [Google Scholar] [CrossRef]
- Hass, V.; Luque-Martinez, I.V.; Gutierrez, M.F.; Moreira, C.G.; Gotti, V.B.; Feitosa, V.P.; Koller, G.; Otuki, M.F.; Loguercio, A.D.; Reis, A. Collagen cross-linkers on dentin bonding: Stability of the adhesive interfaces, degree of conversion of the adhesive, cytotoxicity and in situ MMP inhibition. Dent. Mater. 2016, 32, 732–741. [Google Scholar] [CrossRef]
- Venigalla, B.S.; Jyothi, P.; Kamishetty, S.; Reddy, S.; Cherukupalli, R.C.; Reddy, D.A. Resin bond strength to water versus ethanol-saturated human dentin pretreated with three different cross-linking agents. J. Conserv. Dent. 2016, 19, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Daood, U.; Omar, H.; Tsoi, J.; Fawzy, A. Long-term bond strength to dentine of a chitosan-riboflavin modified two-step etch-and-rinse adhesives. Int. J. Adhes. Adhes. 2018, 85, 263–273. [Google Scholar] [CrossRef]
- Gajjela, R.S.; Satish, R.K.; Sajjan, G.S.; Varma, K.M.; Rambabu, T.; Lakshmi, B.V. Comparative evaluation of chlorhexidine, grape seed extract, riboflavin/chitosan modification on microtensile bond strength of composite resin to dentin after polymerase chain reaction thermocycling: An in vitro study. J. Conserv. Dent. 2017, 20, 120–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollensak, G.; Aurich, H.; Wirbelauer, C.; Pham, D.-T. Potential Use of Riboflavin/UVA Cross-Linking in Bullous Keratopathy. Ophthalmic Res. 2008, 41, 114–117. [Google Scholar] [CrossRef]
- Daood, U.; Matinlinna, J.; Fawzy, A. Synergistic effects of VE-TPGS and riboflavin in crosslinking of dentine. Dent. Mater. 2019, 35, 356–367. [Google Scholar] [CrossRef]
- Hayes, S.; Kamma-Lorger, C.S.; Boote, C. The effect of riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behavior of the ungulate and rabbit corneal stroma. PLoS ONE 2013, 8, e52860. [Google Scholar] [CrossRef]
- Wollensak, G.; Aurich, H.; Pham, D.-T.; Wirbelauer, C. Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A. J. Cataract. Refract. Surg. 2007, 33, 516–521. [Google Scholar] [CrossRef]
- Daood, U.; Omar, H.; Qasim, S.; Nogueira, L.P.; Pichika, M.R.; Mak, K.-K.; Steier, L.; Cky, Y.; Lin, S.L.; Fawzy, A.S. New antimicrobial and collagen crosslinking formulated dentin adhesive with improved bond durability. J. Mech. Behav. Biomed. Mater. 2020, 110, 103927. [Google Scholar] [CrossRef]
- Chung, L.; Dinakarpandian, D.; Yoshida, N.; Lauer-Fields, J.L.; Fields, G.B.; Visse, R.; Nagase, H. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 2004, 23, 3020–3030. [Google Scholar] [CrossRef]
- Perumal, S.; Antipova, O.; Orgel, J.P.R.O. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc. Natl. Acad. Sci. USA 2008, 105, 2824–2829. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, H. Antimicrobial capacity and physico-chemical characteristics of adhesive resin containing riboflavin after photodynamic therapy. Photodiag. Photodyn. Ther. 2021, 33, 102145. [Google Scholar]
- Daood, U.; Heng, C.S.; Lian, J.N.C.; Fawzy, A. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies. Int. J. Oral Sci. 2014, 7, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Hass, V.; de Paula, A.M.; Parreiras, S.; Gutiérrez, M.F.; Luque-Martinez, I.; Matos, T.D.P.; Bandeca, M.C.; Loguercio, A.D.; Yao, X.; Wang, Y.; et al. Degradation of dentin-bonded interfaces treated with collagen cross-linking agents in a cariogenic oral environment: An in situ study. J. Dent. 2016, 49, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Abunawareg, M.; Abuelenain, D.; Elkassas, D.; Abu Haimed, T.; Al-Dharrab, A.; Zidan, A.; Hassan, A.; Pashley, D. Role of dentin cross-linking agents in optimizing dentin bond durability. Int. J. Adhes. Adhes. 2017, 78, 83–88. [Google Scholar] [CrossRef]
- Abuelenain, D.A.; Neel, E.A.A.; Abu-Haimed, T. Effects of dentin modifiers on surface and mechanical properties of acid-etched dentin. Int. J. Adhes. Adhes. 2018, 81, 43–47. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Chen, L.; Yang, Y.; Tan, J. UVA-activated riboflavin improves the strength of human dentin. J. Oral Sci. 2015, 57, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Palamara, J.E.A.; Burrow, M.F. Effects of Collagen Crosslinkers on Dentine: A Literature Review. Calcif. Tissue Int. 2017, 102, 265–279. [Google Scholar] [CrossRef]
- Seseogullari-Dirihan, R.; Apollonio, F.; Mazzoni, A.; Tjaderhane, L.; Pashley, D.; Breschi, L.; Tezvergil-Mutluay, A. Use of crosslinkers to inactivate dentin MMPs. Dent. Mater. 2016, 32, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Pashley, D.H.; Tay, F.R.; Breschi, L.; Tjäderhane, L.; Carvalho, R.M.; Carrilho, M.; Tezvergil-Mutluay, A. State of the art etch-and-rinse adhesives. Dent. Mater. 2011, 27, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Naka, K.; Kawamura, K.; Matsumoto, T.; Nakanishi, I.; Fujimoto, N.; Sato, H.; Seiki, M. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: Implications for bone resorption. Lab. Investig. 1995, 72, 311–322. [Google Scholar]
- Habelitz, S.; Marshall, G.W., Jr.; Balooch, M.; Marshall, S.J. Nanoindentation and storage of teeth. J. Biomech. 2002, 35, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Raum, K.; Kempf, K.; Hein, H.J.; Schubert, J.; Maurer, P. Preservation of micro elastic properties of dentin and tooth enamel in vitro—A scanning acoustic microscopy study. Dent. Mater. 2007, 10, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Secilmis, A.; Dilber, E.; Gokmen, F.; Ozturk, N.; Telatar, T. Effects of storage solutions on mineral contents of dentin. J. Dent. Sci. 2011, 6, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Eltoukhy, R.; Farahat, D.; Abbas, M.; Montaser, M. Assessment of Microtensile Bond Strength of Different Resin Cements Used for Luting of Indirect MOD Resin Composite Inlays to Dentin after Aging in Different Media. Egypt. Dent. J. 2022, 68, 1899–1906. [Google Scholar] [CrossRef]
Date of Searching | Database | Search Strategy |
---|---|---|
28 December 2021 | PubMed | ((((((Riboflavin [Title/Abstract]) AND (Dentin [MeSH Terms])) AND (dentin bonding agents [MeSH Terms])) OR (dentin bonding [MeSH Terms])) OR (collagen crosslinker [Title/Abstract])) OR (collagen crosslinking agent [Title/Abstract])) OR (microtensile bond strength [Title/Abstract]) |
27 December 2021 | Scopus | “(TITLE-ABS-KEY (“Riboflavin”), TITLE-ABS-KEY (“Dentin”), AND TITLE-ABS-KEY (“Bonding”) OR TITLE-ABS-KEY (“micro tensile bond strength”) OR TITLE-ABS-KEY (“Shear bond”) OR TITLE-ABS-KEY (“dental adhesion”) OR TITLE-ABS-KEY (“Adhesive”) OR TITLE-ABS-KEY (“bonding agent”)) OR TITLE-ABS-KEY (“Collagen crosslinking agent”) OR TITLE-ABS-KEY (“Collagen crosslinker”) AND (LIMIT-TO (LANGUAGE, “English”))” |
29 December 2021 | Google Scholar | Riboflavin AND (Dentin) AND (dental adhesive) OR (Dental bonding) OR (dental bonding agent) OR (Dental adhesion) OR (Collagen crosslinker) OR (collagen cross-linking agent) OR (Shear bond strength) OR (micro tensile bond strength) |
Author (Year) | Crosslinker | Storage Condition | Adhesive System | Adhesive Strategy | Bond Strength Measured by- | Author’s Remark |
---|---|---|---|---|---|---|
Cova et al. (2011) | UVA activated riboflavin (0.1%) | Artificial saliva for 24 h, 6 months, or 1 year | XP Bond adhesive (Dentsply) | Pretreatment | µ-TBS | Role of cross-linking agents on dentinal MMPs was not explained in this paper [23] |
Fawzy et al. (2012) | Blue light activated riboflavin/UVA (0.1% and 1%) | Distilled water at 37 °C for 4 months | Cyanoacrylate adhesive (Zapit, Dental Ventures of America, Corona, CA, USA) | Pretreatment | µ-TBS | visible blue light showed to be a promising substitute for UVA as it is clinically more applicable and acceptable [17] |
Fawzy et al. (2013) | Blue light or UVA activated riboflavin (0.1%) | Distilled water at 37 °C for 24 h and 6 months | Cyanoacrylate adhesive (Zapit, Dental Ventures of America, Corona, CA, USA) | Pretreatment | µ-TBS | In all modified and control groups, there was a significant drop in µTBS after 6 months of aging in distilled water when compared to baseline measures taken at 24 h [18] |
Chiang et al. (2013) | UVA activated riboflavin (0.1%, 1%) | Distilled water at 37 °C 24 h and 6 months | Scotchbond Multi-purpose primer and adhesive (3 M/ESPE, St. Paul, MN, USA) | Pretreatment | µ-TBS | Application of 0.1 percent RF under 2-min UVA treatment was effective for improving resin-dentin bonding [30] |
Daood et al. (2014) | Blue light activated riboflavin (1, 3, 5, 10%) | Artificial saliva for 24 h and 9 months | The two-step AdperTM Single Bond adhesive | The experimental adhesive was prepared by incorporating bis-GMA, HEMA and visible light photo-initiators into ethanol. Adhesive-system was then modified with 0, 1.0, 3.0, 5.0% and 10.0% of Riboflavin. | µ-TBS | The addition of RF to the experimental two-step etch-and-rinse adhesive at a concentration of 3% enhanced bond strength and durability after 9 months in artificial saliva storage without altering the degree of conversion in the adhesive monomers [43] |
Mohamed Hashem (2021) | UVA activated Riboflavin (0.1, 0.5%) | Distilled water (37 °C) Duration: Immediate and One month | Zapit adhesive (Dental Ventures of America, Corona, CA, USA) | The 0.1 and 0.5% riboflavin solutions were prepared separately and solutions were then mixed in a commercially available dentin adhesive system. | µ-TBS | Riboflavin concentration has a significant impact on resin–dentin micro tensile bond strength [42] |
Daood et al. (2018) | UVA activated Chitosan/ riboflavin (Undefined) | i. 24 h in distilled water (37 °C) ii. 48 h at artificial saliva | cyanoacrylate adhesive (Zapit, Dental Ventures of North America, Corona, CA, USA). | Chitosan/ riboflavin (Ch/RF) solutions were prepared in four ratios of 1:1, 1:2, 1:3, and 1:4 by volume. The pH of formulated solutions was kept to levels of 6.0 and 1.0 N. After that, formulations were mixed with ethanol-based monomers and acetone-based monomers. To obtain a well-mixed RF/solvent/monomer solution, shaking and sonication processes were applied. | µ-TBS | The concentration of cross-linkers was not mentioned in this paper. Aging time significantly affects resin–dentin micro tensile bond strength [33] |
Fu et al. (2020) | Blue light activated riboflavin (0.1%) | Artificial saliva. 1-week and 6-month storage | UA Scotch bond | The experimental adhesive was prepared using hydrophobic monomer (decandiol methacrylate/D3 MA) bis-GMA, and HEMA (2-hydroxyethyl methacrylate) at a mass ratio of 10:60:30. Ethanol was added as a solvent at a concentration of 30% (m/m). Camphorquinone (0.5%, m/m) DPIHP (1.0%, m/m) and ethyl (4- dimethylamino) benzoate (0.5%, m/m) were used as photoinitiator. Methacryloyloxydecyl Dihydrogen phosphate/14% (MDP) is added as a mild hydrophilic monomer. At a sub-minimal ratio of 5%, n, biphenyl dimethacrylate (5%) (BPDM), dipentaerythritol pentacrylate phosphoric acid ester (PENTA) were added. This experimental adhesive was then modified by adding 0.1% RF. | µ-TBS | Resin–dentin micro-tensile bond strength has been found to be reduced after 6 months of aging [26] |
Hass et al. (2016) | UVA-activated. Riboflavin (0.1%), ii. Proanthocyanidin iii. Glutaraldehyde | Distilled water 24 h 18 months | Single Bond Plus (SB) (3 M ESPE, St. Paul, MN, USA) Batch number N531785 | Pretreatment | µ-TBS | Glutaraldehyde substantially decreased cell viability and it is recommended to avoid in clinical settings [31] |
Venigalla et al. (2016) | i. UVA activated riboflavin (0.1%) ii.1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), iii. Proanthocyanidin, a natural cross-linker | Artificial saliva for 24 h and the other after 6 months | Adper Single Bond Adhesive | Pretreatment | µ-TBS | When compared to other chemical cross-linking agents, UVA–riboflavin photo-oxidative cross-linking was more successful in improving resin–dentin binding strength and durability [32] |
Hass et al. (2016) | UVA activated riboflavin (0.1%) | No aging | Scotchbond etchant (3 M ESPE) Single Bond Plus (3 M ESPE, St). | Pretreatment | µ-TBS | Although glutaraldehyde proved efficient in stabilizing resin–dentin contacts, its clinical application is controversial due to the risk of cytotoxicity [44] |
Abunawareg et al. (2017) | Blue light or UVA activated Riboflavin (1%) | Distilled water at 37 °C for 24 h, 6 months, or 12 months | cyanoacrylate adhesive (Zapit, Dental Ventures of America Inc., Corona, CA, USA). | Pretreatment | µ-TBS | Dental collagen cross-linking produced by UV or blue light-activated 1 percent riboflavin or EDC-HCl improved the resin–dentin bond’s endurance and strength [45] |
Gajjela et al. (2017) | UVA activated 1% riboflavin | No aging | cyanoacrylate adhesive | Pretreatment | µ-TBS | When the dentin surface was prepared with riboflavin/chitosan, as opposed to the control group, an increase in the bond strength of resin composite to dentin was obtained [34] |
Abuelenain et.al (2018) | Blue light or UVA activated riboflavin (1%) | Distilled water at 37 °C for 24 h | (ScotchbondTM Universal Etchant, 3 M ESPE) | Pretreatment | µ-TBS | Acid etching of dentin reduced hardness, and the use of proposed cross-linking substances did not improve the hardness or μTBS [46] |
Daood et al. (2020) | UVA activated riboflavin (0.125%) | Artificial saliva for 24 h and 12 months | experimental adhesive system based on bis-GMA, HEMA and hydrophobic monomer | Bis-GMA, HEMA and hydrophobic monomer was doped with RF0.125 (RF—Riboflavin) or RF/VE-TPGS (0.25/0.50) used as an experimental adhesive. | µ-TBS | After 24-h aging in artificial saliva, the RF/VE-TPGS0.25 groups had the strongest µTBS of dentin bonding [24] |
Daood et al. (2020) | UVA activated riboflavin (0.5, 1, 2%) | Distilled water at (37 °C) for 24 h. | cyanoacrylate adhesive (Zapit, Dental Ventures of North America, Corona, CA, USA). | Experimental adhesives modified with different fractions of dioctadecyldimethyl ammonium bromide quaternary ammonium and riboflavin (QARF). | µ-TBS | The use of QARF at 1% in an experimental two-step etch-and-rinse adhesive enhanced immediate bond strength and bond endurance without compromising bond integrity [24] |
Daood et al. (2021) | UVA activated riboflavin (0.125%) | Distilled water at 37 °C for 12 months | Adper Scotchbond™ Etchant, Adper™ Single bond 2 | Riboflavin-5-phosphate solution was used with mixture of novel k21 PLGA nanoparticles and VE-TPGS in the adhesive system | µ-TBS | No significant information found about resin–dentin micro tensile bond strength [25] |
Author (Year) | Reason of Exclusion |
---|---|
Mohamed Hashem (2021) [42] | Inadequate information on mean/SD. |
Daood et al. (2018) [33] | The concentration of riboflavin used is undefined in the study. |
Daood et al. (2020) [24] | The articles do not mention using 0.1% of riboflavin. |
Daood et al. (2021) [25] | Articles evaluated riboflavin concentration rather than 0.1%. |
Daood et al. (2019) [24] | Articles mentioned riboflavin concentrations used except for 0.1%. |
Fawzy et al. (2012) [17] | No sample size. |
Abunawareg et al. (2017) [45] | Articles mentioned the concentration of riboflavin used rather than 0.1%. |
Daood et al. (2014) [43] | Articles tested riboflavin in different concentrations but not 0.1%. |
Abuelenain et al. (2018) [46] | Articles mentioned riboflavin concentrations used except for 0.1%, no aging had been performed. |
Gajjela et al. (2017) [34] | Articles mentioned riboflavin used in concentrations except for 0.1%. Aging was not performed. |
Hass et al. (2016) [44] | No information regarding storage had been provided. |
Name of Study | Clearly Stated Aims/Objectives | Detailed Explanation of Sample Size Calculation | Detailed Explanation of Sampling Technique | Details of Comparison Group | Detailed Explanation of Methodology | Operator Details | Randomization | Method of Measurement of Outcome | Outcome Assessment Details | Blinding | Statistical Analysis | Presentation of Results | Total Score | Final Score | Overall Bias |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chiang et al., 2013 [30] | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 20 | 83.3 | Low |
Cova et al., 2011 [23] | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 20 | 83.3 | Low |
Fawzy et al., 2013 [18] | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 20 | 83.3 | Low |
Fu et al., 2020 [26] | 2 | 1 | 0 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 19 | 79.2 | Low |
Hass et al., 2016 [31] | 2 | 1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 20 | 83.3 | Low |
Venigalla et al., 2016 [32] | 2 | 1 | 0 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 19 | 79.2 | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eusufzai, S.Z.; Barman, A.; Jamayet, N.B.; Ahmad, W.M.A.W.; Mahdi, S.S.; Sheikh, Z.; Daood, U. Effects of Riboflavin Collagen Crosslinker on Dentin Adhesive Bonding Efficiency: A Systematic Review and Meta-Analysis. Materials 2023, 16, 1701. https://doi.org/10.3390/ma16041701
Eusufzai SZ, Barman A, Jamayet NB, Ahmad WMAW, Mahdi SS, Sheikh Z, Daood U. Effects of Riboflavin Collagen Crosslinker on Dentin Adhesive Bonding Efficiency: A Systematic Review and Meta-Analysis. Materials. 2023; 16(4):1701. https://doi.org/10.3390/ma16041701
Chicago/Turabian StyleEusufzai, Sumaiya Zabin, Aparna Barman, Nafij Bin Jamayet, Wan Muhamad Amir W Ahmad, Syed Sarosh Mahdi, Zeeshan Sheikh, and Umer Daood. 2023. "Effects of Riboflavin Collagen Crosslinker on Dentin Adhesive Bonding Efficiency: A Systematic Review and Meta-Analysis" Materials 16, no. 4: 1701. https://doi.org/10.3390/ma16041701
APA StyleEusufzai, S. Z., Barman, A., Jamayet, N. B., Ahmad, W. M. A. W., Mahdi, S. S., Sheikh, Z., & Daood, U. (2023). Effects of Riboflavin Collagen Crosslinker on Dentin Adhesive Bonding Efficiency: A Systematic Review and Meta-Analysis. Materials, 16(4), 1701. https://doi.org/10.3390/ma16041701