A Review of the Mechanical Properties of Graphene Aerogel Materials: Experimental Measurements and Computer Simulations
Abstract
:1. Introduction
2. Experimental Measurements
2.1. Production Methodologies of Graphene Aerogels
2.2. Intrinsic Characteristics of Components
2.3. Structural Characteristics
2.3.1. Microstructural Parameters
2.3.2. Biomimetic Structure
2.3.3. Structures Based on Mathematical Curves and Shapes
D Printing Structure
3. Simulation Tests
3.1. Molecular Dynamic Simulations
3.1.1. All-Atom Molecular Dynamics Simulation
3.1.2. Coarse-Grained Molecular Dynamics Simulation
3.1.3. Coarse-grained Model with Rectangular Mapping Strategy
3.1.4. Coarse-Grained Model with Four-to-One (4-1) Hexagonal Mapping Strategy
3.1.5. Other Relevant Models
3.2. Finite Element Method
4. Challenge and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
GA | Graphene aerogel |
GAs | Graphene aerogels |
3D | Three dimensional |
CVD | Chemical vapor deposition |
MD | Molecular dynamics |
GO | Graphene oxide |
vdW | van der Waals |
FD | Freeze drying |
ScD | Supercritical CO2 drying |
CG | Coarse-grained |
MD | Molecular dynamics |
AAMD | All-atom molecular dynamics |
CGMD | Coarse-grained molecular dynamics |
REBO | Reactive empirical bond order |
AIREBO | Adaptive intermolecular reactive empirical bond order |
SSG | Schwarz-surface-like graphene |
FE | Finite element |
FEM | Finite element method |
CNT | Carbon nanotube |
References
- Cao, Q.; Geng, X.; Wang, H.; Wang, P.; Liu, A.; Lan, Y.; Peng, Q. A Review of Current Development of Graphene Mechanics. Crystals 2018, 8, 357. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018, 19, 613–648. [Google Scholar] [CrossRef] [Green Version]
- Ikram, R.; Mohamed Jan, B.; Atif Pervez, S.; Papadakis, V.M.; Ahmad, W.; Bushra, R.; Kenanakis, G.; Rana, M. Recent Advancements of N-Doped Graphene for Rechargeable Batteries: A Review. Crystals 2020, 10, 1080. [Google Scholar] [CrossRef]
- Chen, W.; Gui, X.; Yang, L.; Zhu, H.; Tang, Z. Wrinkling of two-dimensional materials: Methods, properties and applications. Nanoscale Horiz. 2019, 4, 291–320. [Google Scholar] [CrossRef]
- Budarapu, P.R.; Javvaji, B.; Sutrakar, V.K.; Mahapatra, D.R.; Paggi, M.; Zi, G.; Rabczuk, T. Lattice orientation and crack size effect on the mechanical properties of Graphene. Int. J. Fract. 2017, 203, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Liu, J.Z.; Chang, S.L.Y.; Wu, Y.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Zhao, Z.; Wan, W.; Gogotsi, Y.; Qiu, J. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219–2223. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, T.; Jiang, M.; Duan, Y.; Zhang, J. Ambient pressure dried graphene aerogels with superelasticity and multifunctionality. J. Mater. Chem. A 2015, 3, 19268–19272. [Google Scholar] [CrossRef]
- Zhu, C.; Han, T.Y.-J.; Duoss, E.B.; Golobic, A.M.; Kuntz, J.D.; Spadaccini, C.M.; Worsley, M.A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yi, N.; Huang, L.; Zhang, T.; Fang, S.; Chang, H.; Li, N.; Oh, J.; Lee, J.A.; Kozlov, M.; et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat. Commun. 2015, 6, 6141. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; et al. Ultrastiff and Strong Graphene Fibers via Full-Scale Synergetic Defect Engineering. Adv. Mater. 2016, 28, 6449–6456. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, N.; Cui, Y.; Gao, W.; Zhao, Q.; Gao, C.; Bai, H.; Xie, T. Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano 2017, 11, 6817–6824. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Vyatskikh, A.; Gao, H.; Greer, J.R.; Li, X. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proc. Natl. Acad. Sci. USA 2019, 116, 6665–6672. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, T.; Wang, Z.; Ren, Z.; Yan, S.; Duan, Y.; Zhang, J. Ultralight, Superelastic, and Fatigue-Resistant Graphene Aerogel Templated by Graphene Oxide Liquid Crystal Stabilized Air Bubbles. ACS Appl. Mater. Interfaces 2019, 11, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Lv, L.; Cheng, Z.; Liang, Y.; Zhou, Q.; Zhao, Y.; Qu, L. Superelastic, Macroporous Polystyrene-Mediated Graphene Aerogels for Active Pressure Sensing. Chem. Asian J. 2016, 11, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L. Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 2021, 406, 126777. [Google Scholar] [CrossRef]
- Kumar, P.; Šilhavík, M.; Ali Zafar, Z.; Červenka, J. Contact resistance based tactile sensor using covalently cross-linked graphene aerogels. Nanoscale 2022, 14, 1440–1451. [Google Scholar] [CrossRef]
- Choi, B.G.; Yang, M.; Hong, W.H.; Choi, J.W.; Huh, Y.S. 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano 2012, 6, 4020–4028. [Google Scholar] [CrossRef]
- Cao, L.; Wang, C.; Huang, Y. Structure optimization of graphene aerogel-based composites and applications in batteries and supercapacitors. Chem. Eng. J. 2023, 454, 140094. [Google Scholar] [CrossRef]
- Bi, S.; Zhang, L.; Mu, C.; Liu, M.; Hu, X. Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels. Appl. Surf. Sci. 2017, 412, 529–536. [Google Scholar] [CrossRef]
- Guo, H.; Hua, T.; Qin, J.; Wu, Q.; Wang, R.; Qian, B.; Li, L.; Shi, X. A New Strategy of 3D Printing Lightweight Lamellar Graphene Aerogels for Electromagnetic Interference Shielding and Piezoresistive Sensor Applications. Adv. Mater. Technol. 2022, 7, 2101699. [Google Scholar] [CrossRef]
- Mei, Q.; Xiao, H.; Ding, G.; Liu, H.; Zhao, C.; Wang, R.; Huang, Z. Ultralight Open-Cell Graphene Aerogels with Multiple, Gradient Microstructures for Efficient Microwave Absorption. Nanomaterials 2022, 12, 1896. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, Y.; Zhang, T.; Chang, H.; Xiao, P.; Chen, H.; Huang, Z.; Chen, Y. Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam. Adv. Mater. 2015, 27, 2049–2053. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, L.; Liu, D. Ultralight graphene/carbon nanotubes aerogels with compressibility and oil absorption properties. Materials 2018, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Bo, Y.; Yu, A.; Liu, H.; Chen, S.; Xu, W.; Diao, S.; Zhang, C. Preparation of elastic graphene aerogel and its adsorption of oil. J. Porous Mater. 2021, 28, 39–56. [Google Scholar] [CrossRef]
- Huang, J.; Li, D.; Huang, L.; Tan, S.; Liu, T. Bio-Based Aerogel Based on Bamboo, Waste Paper, and Reduced Graphene Oxide for Oil/Water Separation. Langmuir 2022, 38, 3064–3075. [Google Scholar] [CrossRef]
- Afroze, J.D.; Abden, M.J.; Yuan, Z.; Wang, C.; Wei, L.; Chen, Y.; Tong, L. Core-shell structured graphene aerogels with multifunctional mechanical, thermal and electromechanical properties. Carbon 2020, 162, 365–374. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, R.; Fang, D. Superelastic, fatigue resistant and heat insulated carbon nanofiber aerogels for piezoresistive stress sensors. Ceram. Int. 2020, 46, 2122–2127. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.; Wang, B.; Huang, M.; Wang, B.; Jiang, Y.; Ruoff, R.S. Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure. ACS Nano 2018, 12, 5816–5825. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, N.; Yao, W.; Xu, Z.; Bai, H.; Gao, C. Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Adv. 2017, 7, 33600–33605. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Xin, H.; Li, W. Microcellular 3D graphene foam via chemical vapor deposition of electroless plated nickel foam templates. Mater. Lett. 2016, 162, 105–109. [Google Scholar] [CrossRef]
- Zhou, M.; Lin, T.; Huang, F.; Zhong, Y.; Wang, Z.; Tang, Y.; Bi, H.; Wan, D.; Lin, J. Highly Conductive Porous Graphene/Ceramic Composites for Heat Transfer and Thermal Energy Storage. Adv. Funct. Mater. 2013, 23, 2263–2269. [Google Scholar] [CrossRef]
- Wan, W.; Zhang, F.; Yu, S.; Zhang, R.; Zhou, Y. Hydrothermal formation of graphene aerogel for oil sorption: The role of reducing agent, reaction time and temperature. New J. Chem. 2016, 40, 3040–3046. [Google Scholar] [CrossRef]
- Huang, J.; Liu, H.; Chen, S.; Ding, C. Graphene aerogel prepared through double hydrothermal reduction as high-performance oil adsorbent. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2017, 226, 141–150. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Medarametla, S.P.; Li, H.; Zhou, C.; Lin, D. 3D Printing of Graphene Aerogels. Small 2016, 12, 1702–1708. [Google Scholar] [CrossRef]
- Yuan, S.; Fan, W.; Wang, D.; Zhang, L.; Miao, Y.-E.; Lai, F.; Liu, T. 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. J. Mater. Chem. A 2021, 9, 423–432. [Google Scholar] [CrossRef]
- Hunter, N.; Karamati, A.; Xie, Y.; Lin, H.; Wang, X. Laser Photoreduction of Graphene Aerogel Microfibers: Dynamic Electrical and Thermal Behaviors. ChemPhysChem 2022, 2, e202200417. [Google Scholar] [CrossRef]
- Wu, M.; Geng, H.; Hu, Y.; Ma, H.; Yang, C.; Chen, H.; Wen, Y.; Cheng, H.; Li, C.; Liu, F.; et al. Superelastic graphene aerogel-based metamaterials. Nat. Commun. 2022, 13, 4561. [Google Scholar] [CrossRef]
- Yeo, S.J.; Oh, M.J.; Yoo, P.J. Structurally Controlled Cellular Architectures for High-Performance Ultra-Lightweight Materials. Adv. Mater. 2019, 31, 1803670. [Google Scholar] [CrossRef]
- Xie, J.; Niu, L.; Qiao, Y.; Chen, P.; Rittel, D. Impact energy absorption behavior of graphene aerogels prepared by different drying methods. Mater. Des. 2022, 221, 110912. [Google Scholar] [CrossRef]
- Yao, W.; Mao, R.; Gao, W.; Chen, W.; Xu, Z.; Gao, C. Piezoresistive effect of superelastic graphene aerogel spheres. Carbon 2020, 158, 418–425. [Google Scholar] [CrossRef]
- Kok, Z.K.J.; Wong, C.H. Molecular dynamics simulation studies of mechanical properties of different carbon nanotube systems. Mol. Simul. 2016, 42, 1274–1280. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Wang, S. A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations. Compos. Part B Eng. 2019, 160, 348–361. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Yao, B.; Liu, T.; Xiao, W.; Song, Y.; Qian, F.; Zhu, C.; Duoss, E.B.; Spadaccini, C.M.; Li, Y.; et al. Direct ink writing of organic and carbon aerogels. Mater. Horiz. 2018, 5, 1166–1175. [Google Scholar] [CrossRef]
- Wu, L.; Liu, L.; Gao, B.; Muñoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z.; Wang, H. Aggregation Kinetics of Graphene Oxides in Aqueous Solutions: Experiments, Mechanisms, and Modeling. Langmuir 2013, 29, 15174–15181. [Google Scholar] [CrossRef]
- Li, D.; Kaner, R.B. Graphene-Based Materials. Science 2008, 320, 1170–1171. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhi, C.; Wang, X.; Tang, D.; Xu, Y.; Weng, Q.; Jiang, X.; Mitome, M.; Golberg, D.; et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 2013, 4, 2905. [Google Scholar] [CrossRef] [Green Version]
- Hensleigh, R.M.; Cui, H.; Oakdale, J.S.; Ye, J.C.; Campbell, P.G.; Duoss, E.B.; Spadaccini, C.M.; Zheng, X.; Worsley, M.A. Additive manufacturing of complex micro-architected graphene aerogels. Mater. Horiz. 2018, 5, 1035–1041. [Google Scholar] [CrossRef] [Green Version]
- Yeo, S.J.; Oh, M.J.; Jun, H.M.; Lee, M.; Bae, J.G.; Kim, Y.; Park, K.J.; Lee, S.; Lee, D.; Weon, B.M.; et al. A Plesiohedral Cellular Network of Graphene Bubbles for Ultralight, Strong, and Superelastic Materials. Adv. Mater. 2018, 30, 1802997. [Google Scholar] [CrossRef]
- Hu, K.; Szkopek, T.; Cerruti, M. Tuning the aggregation of graphene oxide dispersions to synthesize elastic, low density graphene aerogels. J. Mater. Chem. A 2017, 5, 23123–23130. [Google Scholar] [CrossRef]
- Pang, K.; Song, X.; Xu, Z.; Liu, X.; Liu, Y.; Zhong, L.; Peng, Y.; Wang, J.; Zhou, J.; Meng, F.; et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 2020, 6, eabd4045. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, T.; Chang, H.; Yang, Y.; Xiao, P.; Zhang, H.; Li, C.; Tiwary, C.S.; Ajayan, P.M.; Chen, Y. Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures. Sci. Adv. 2019, 5, eaav2589. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Li, X.; Wang, H.; Su, F.; Wang, D.; Yao, D.; Zheng, Y. Synergistic Regulation of the Microstructure for Multifunctional Graphene Aerogels by a Dual Template Method. ACS Appl. Mater. Interfaces 2022, 14, 22544–22553. [Google Scholar] [CrossRef]
- Zhang, X.; Su, J.; Wang, X.; Tong, X.; Yao, F.; Yuan, C. Synthesis of graphene aerogels using cyclohexane and n-butanol as soft templates. RSC Adv. 2020, 10, 14283–14290. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Huang, M.; Ruoff, R.S. Graphene oxide aerogel ‘ink’ at room temperature, and ordered structures by freeze casting. Carbon 2021, 183, 620–627. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, N.; Malfait, W.J. Universal strategy for rapid 3D printing of aerogels. Matter 2022, 5, 2419–2423. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, X.; Akbari Garakani, M.; Lin, X.; Wu, Y.; Liu, X.; Sun, X.; Kim, J.-K. Graphene Aerogel/Epoxy Composites with Exceptional Anisotropic Structure and Properties. ACS Appl. Mater. Interfaces 2015, 7, 5538–5549. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, X.; Li, H.; Xiong, G.; Hu, H.; Fisher, T.S. Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 2015, 93, 659–670. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, X.; Lin, D.; Chen, W.; Xiong, G.; Yu, Y.; Fisher, T.S.; Li, H. Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson’s Ratio and Superelasticity. Adv. Mater. 2016, 28, 2229–2237. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Sang, X.; Liu, C.; Luo, T.; Peng, L.; Han, B.; Tan, X.; Ma, X.; Wang, D.; et al. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation. Sci. Rep. 2016, 6, 25830. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Ding, M.; Zhang, B.; Qiao, X.; Liu, C.-Y. Graphene aerogels that withstand extreme compressive stress and strain. Nanoscale 2018, 10, 18291–18299. [Google Scholar] [CrossRef]
- Yang, H.; Li, Z.; Sun, G.; Jin, X.; Lu, B.; Zhang, P.; Lin, T.; Qu, L. Superplastic Air-Dryable Graphene Hydrogels for Wet-Press Assembly of Ultrastrong Superelastic Aerogels with Infinite Macroscale. Adv. Funct. Mater. 2019, 29, 1901917. [Google Scholar] [CrossRef]
- Kashani, H.; Ito, Y.; Han, J.; Liu, P.; Chen, M. Extraordinary tensile strength and ductility of scalable nanoporous graphene. Sci. Adv. 2019, 5, eaat6951. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Xie, J.; Li, G.; Zhang, X.; Chen, P. The compression mechanical properties of graphene aerogel. EPJ Web Conf. 2021, 250, 06010. [Google Scholar] [CrossRef]
- Šilhavík, M.; Kumar, P.; Zafar, Z.A.; Míšek, M.; Čičala, M.; Piliarik, M.; Červenka, J. Anomalous elasticity and damping in covalently cross-linked graphene aerogels. Commun. Phys. 2022, 5, 27. [Google Scholar] [CrossRef]
- Zhu, E.; Pang, K.; Chen, Y.; Liu, S.; Liu, X.; Xu, Z.; Liu, Y.; Gao, C. Ultra-stable graphene aerogels for electromagnetic interference shielding. Sci. China Mater. 2022. [Google Scholar] [CrossRef]
- Meza, L.R.; Das, S.; Greer, J.R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 2014, 345, 1322–1326. [Google Scholar] [CrossRef] [Green Version]
- Kucheyev, S.O.; Stadermann, M.; Shin, S.J.; Satcher, J.H., Jr.; Gammon, S.A.; Letts, S.A.; van Buuren, T.; Hamza, A.V. Super-Compressibility of Ultralow-Density Nanoporous Silica. Adv. Mater. 2012, 24, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Li, Y.; He, X.; Gui, X.; Shang, Y.; Wang, C.; Wang, C.; Zhao, W.; Du, S.; Shi, E.; et al. Graphene Nanoribbon Aerogels Unzipped from Carbon Nanotube Sponges. Adv. Mater. 2014, 26, 3241–3247. [Google Scholar] [CrossRef]
- Liu, J.; Qin, H.; Liu, Y. Multi-Scale Structure–Mechanical Property Relations of Graphene-Based Layer Materials. Materials 2021, 14, 4757. [Google Scholar] [CrossRef]
- Ni, N.; Barg, S.; Garcia-Tunon, E.; Macul Perez, F.; Miranda, M.; Lu, C.; Mattevi, C.; Saiz, E. Understanding Mechanical Response of Elastomeric Graphene Networks. Sci. Rep. 2015, 5, 13712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikram, R.; Jan, B.M.; Ahmad, W. An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. J. Mater. Res. Technol. 2020, 9, 11587–11610. [Google Scholar] [CrossRef]
- Qiu, L.; Huang, B.; He, Z.; Wang, Y.; Tian, Z.; Liu, J.Z.; Wang, K.; Song, J.; Gengenbach, T.R.; Li, D. Extremely Low Density and Super-Compressible Graphene Cellular Materials. Adv. Mater. 2017, 29, 1701553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Zhu, J.; Rajabpour, S.; Joshi, K.; Kowalik, M.; Croom, B.; Schwab, Y.; Zhang, L.; Bumgardner, C.; Brown, K.R.; et al. Graphene reinforced carbon fibers. Sci. Adv. 2020, 6, eaaz4191. [Google Scholar] [CrossRef] [Green Version]
- Xiang, C.; Behabtu, N.; Liu, Y.; Chae, H.G.; Young, C.C.; Genorio, B.; Tsentalovich, D.E.; Zhang, C.; Kosynkin, D.V.; Lomeda, J.R.; et al. Graphene Nanoribbons as an Advanced Precursor for Making Carbon Fiber. ACS Nano 2013, 7, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Niu, L.; Qiao, Y.; Lei, Y.; Li, G.; Zhang, X.; Chen, P. The influence of the drying method on the microstructure and the compression behavior of graphene aerogel. Diam. Relat. Mater. 2022, 121, 108772. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge Solid State Science Series; Cambridge University Press: Cambridge, UK, 1997; ISBN 978-0-521-49911-8. [Google Scholar] [CrossRef]
- Mills, N.J.; Zhu, H.X. The high strain compression of closed-cell polymer foams. J. Mech. Phys. Solids 1999, 47, 669–695. [Google Scholar] [CrossRef]
- Han, M.; Xu, B.; Zhang, M.; Yao, J.; Li, Q.; Chen, W.; Zhou, W. Preparation of biologically reduced graphene oxide-based aerogel and its application in dye adsorption. Sci. Total Environ. 2021, 783, 147028. [Google Scholar] [CrossRef]
- Tang, D.-M.; Ren, C.-L.; Zhang, L.; Tao, Y.; Zhang, P.; Lv, W.; Jia, X.-L.; Jiang, X.; Zhou, G.; Ohmura, T.; et al. Size Effects on the Mechanical Properties of Nanoporous Graphene Networks. Adv. Funct. Mater. 2019, 29, 1900311. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Pang, K.; Yang, H.; Guo, X. Intrinsically microstructured graphene aerogel exhibiting excellent mechanical performance and super-high adsorption capacity. Carbon 2020, 161, 146–152. [Google Scholar] [CrossRef]
- Zhu, H.X.; Chen, C.Y. Combined effects of relative density and material distribution on the mechanical properties of metallic honeycombs. Mech. Mater. 2011, 43, 276–286. [Google Scholar] [CrossRef]
- Zhu, H.X.; Hobdell, J.R.; Windle, A.H. Effects of cell irregularity on the elastic properties of open-cell foams. Acta Mater. 2000, 48, 4893–4900. [Google Scholar] [CrossRef]
- Zhu, H.X. Size-dependent elastic properties of micro- and nano-honeycombs. J. Mech. Phys. Solids 2010, 58, 696–709. [Google Scholar] [CrossRef]
- Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36. [Google Scholar] [CrossRef]
- Gao, L.; Fan, R.; Zhou, W.; Hu, X.; Cao, K.; Wang, W.; Lu, Y. Biomimetic and Radially Symmetric Graphene Aerogel for Flexible Electronics. Adv. Electron. Mater. 2019, 5, 1900353. [Google Scholar] [CrossRef]
- Liu, X.; Pang, K.; Qin, H.; Liu, Y.; Liu, Y.; Gao, C.; Xu, Z. Hyperbolic Graphene Framework with Optimum Efficiency for Conductive Composites. ACS Nano 2022, 16, 14703–14712. [Google Scholar] [CrossRef]
- Gao, H.; Zhu, Y.; Mao, L.; Wang, F.; Luo, X.; Liu, Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W.; et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, Q.; Hao, M.; Hu, Y.; Lin, Z.; Peng, L.; Wang, T.; Ren, X.; Wang, C.; Zhao, Z.; et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, X.; Qin, Y.; Dong, P.; Yao, W.; Matz, J.; Ajayan, P.M.; Shen, J.; Ye, M. Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative Poisson’s ratio. Nat. Commun. 2021, 12, 4092. [Google Scholar] [CrossRef]
- Fu, K.; Yao, Y.; Dai, J.; Hu, L. Progress in 3D Printing of Carbon Materials for Energy-Related Applications. Adv. Mater. 2017, 29, 1603486. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; Small, W.; Lewicki, J.P.; Weisgraber, T.H.; Duoss, E.B.; Chinn, S.C.; Pearson, M.A.; Spadaccini, C.M.; Maxwell, R.S.; Wilson, T.S. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response. Sci. Rep. 2016, 6, 24871. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhao, J.; Ren, J.; Rong, L.; Cao, P.-F.; Advincula, R.C. 3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam. Adv. Funct. Mater. 2019, 29, 1900469. [Google Scholar] [CrossRef]
- Guo, B.; Liang, G.; Yu, S.; Wang, Y.; Zhi, C.; Bai, J. 3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications. Energy Storage Mater. 2021, 39, 146–165. [Google Scholar] [CrossRef]
- Winczewski, S.; Shaheen, M.Y.; Rybicki, J. Interatomic potential suitable for the modeling of penta-graphene: Molecular statics/molecular dynamics studies. Carbon 2018, 126, 165–175. [Google Scholar] [CrossRef]
- Srivastava, I.; Kotia, A.; Ghosh, S.K.; Ali, M.K.A. Recent advances of molecular dynamics simulations in nanotribology. J. Mol. Liq. 2021, 335, 116154. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [Green Version]
- Baowan, D.; Cox, B.J.; Hilder, T.A.; Hill, J.M.; Thamwattana, N. Chapter 3—Evaluation of Lennard-Jones Potential Fields. In Modelling and Mechanics of Carbon-Based Nanostructured Materials; Baowan, D., Cox, B.J., Hilder, T.A., Hill, J.M., Thamwattana, N., Eds.; Micro and Nano Technologies; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 59–86. ISBN 978-0-12-812463-5. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, K.; Wu, Y. Multiscale modelling of graphene sheet and its application in laminated composites. Compos. Struct. 2021, 276, 114416. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Jung, G.S.; Kang, M.J.; Buehler, M.J. The mechanics and design of a lightweight three-dimensional graphene assembly. Sci. Adv. 2017, 3, e1601536. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Demeke, W.; Lee, S.; Chung, J.; Ryu, B.; Ryu, S. Micromechanics-based theoretical prediction for thermoelectric properties of anisotropic composites and porous media. Int. J. Therm. Sci. 2021, 165, 106918. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Zhang, M.; Yang, M.; Gong, X.; Yu, F.; Zheng, J. Comparative Study of Graphene Hydrogels and Aerogels Reveals the Important Role of Buried Water in Pollutant Adsorption. Environ. Sci. Technol. 2017, 51, 12283–12292. [Google Scholar] [CrossRef]
- Patil, S.P.; Shendye, P.; Markert, B. Molecular Investigation of Mechanical Properties and Fracture Behavior of Graphene Aerogel. J. Phys. Chem. B 2020, 124, 6132–6139. [Google Scholar] [CrossRef]
- Nieto, A.; Boesl, B.; Agarwal, A. Multi-scale intrinsic deformation mechanisms of 3D graphene foam. Carbon 2015, 85, 299–308. [Google Scholar] [CrossRef]
- Patil, S.P.; Kulkarni, A.; Markert, B. Shockwave response of graphene aerogels: An all-atom simulation study. Comput. Mater. Sci. 2021, 189, 110252. [Google Scholar] [CrossRef]
- Liu, H.; Cao, Z.K.; Luo, H.J.; Shi, J.C.; Yao, G.C. Performance of closed-cell aluminum foams subjected to impact loading. Mater. Sci. Eng. A 2013, 570, 27–31. [Google Scholar] [CrossRef]
- Zheng, B.; Zheng, Z.; Gu, G.X. Uncertainty quantification and prediction for mechanical properties of graphene aerogels via Gaussian process metamodels. Nano Futur. 2021, 5, 045004. [Google Scholar] [CrossRef]
- Morris, B.; Becton, M.; Wang, X. Mechanical abnormality in graphene-based lamellar superstructures. Carbon 2018, 137, 196–206. [Google Scholar] [CrossRef]
- Martin, J.W.; de Tomas, C.; Suarez-Martinez, I.; Kraft, M.; Marks, N.A. Topology of Disordered 3D Graphene Networks. Phys. Rev. Lett. 2019, 123, 116105. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, Y.; Wu, H. Formation and topological structure of three-dimensional disordered graphene networks. Phys. Chem. Chem. Phys. 2021, 23, 10290–10302. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Wu, B.; He, Z.; Xia, J.; Wu, H. Micromechanical Landscape of Three-Dimensional Disordered Graphene Networks. Nano Lett. 2021, 21, 8401–8408. [Google Scholar] [CrossRef]
- Jung, G.S.; Yeo, J.; Tian, Z.; Qin, Z.; Buehler, M.J. Unusually low and density-insensitive thermal conductivity of three-dimensional gyroid graphene. Nanoscale 2017, 9, 13477–13484. [Google Scholar] [CrossRef]
- Jung, G.S.; Buehler, M.J. Multiscale Mechanics of Triply Periodic Minimal Surfaces of Three-Dimensional Graphene Foams. Nano Lett. 2018, 18, 4845–4853. [Google Scholar] [CrossRef]
- Lei, J.; Liu, Z. The structural and mechanical properties of graphene aerogels based on Schwarz-surface-like graphene models. Carbon 2018, 130, 741–748. [Google Scholar] [CrossRef]
- Peng, W.; Sun, K.; Onck, P. Structure–property relations of three-dimensional nanoporous template-based graphene foams. Extreme Mech. Lett. 2022, 54, 101737. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Ozboyaci, M.; Kokh, D.B.; Corni, S.; Wade, R.C. Modeling and simulation of protein-surface interactions: Achievements and challenges. Q. Rev. Biophys. 2016, 49, e4. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Olsson, S.; Wehmeyer, C.; Pérez, A.; Charron, N.E.; de Fabritiis, G.; Noé, F.; Clementi, C. Machine Learning of Coarse-Grained Molecular Dynamics Force Fields. ACS Cent. Sci. 2019, 5, 755–767. [Google Scholar] [CrossRef] [Green Version]
- Cranford, S.; Buehler, M.J. Twisted and coiled ultralong multilayer graphene ribbons. Model. Simul. Mater. Sci. Eng. 2011, 19, 054003. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Chen, S. The microscopic deformation mechanism of 3D graphene foam materials under uniaxial compression. Carbon 2016, 109, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Wang, C.; Wang, T.-C.; Yao, Y. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model. ACS Nano 2017, 11, 8988–8997. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Wang, C.; Wang, X. Graphene Foam: Hole-Flake Network for Uniaxial Supercompression and Recovery Behavior. ACS Nano 2018, 12, 11491–11502. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Pan, D.; Chen, S. Energy dissipative mechanism of graphene foam materials. Carbon 2018, 132, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, C.; Chen, S. Micro-mechanism and influencing factors of graphene foam elasticity. Carbon 2019, 148, 267–276. [Google Scholar] [CrossRef]
- Khan, M.B.; Wang, C.; Wang, S.; Fang, D.; Chen, S. The mechanical property and microscopic deformation mechanism of nanoparticle-contained graphene foam materials under uniaxial compression. Nanotechnology 2020, 32, 115701. [Google Scholar] [CrossRef]
- Liu, S.; Lyu, M.; Wang, C. Mechanical Properties and Deformation Mechanisms of Graphene Foams with Bi-Modal Sheet Thickness by Coarse-Grained Molecular Dynamics Simulations. Materials 2021, 14, 5622. [Google Scholar] [CrossRef]
- Nautiyal, P.; Mujawar, M.; Boesl, B.; Agarwal, A. In-situ mechanics of 3D graphene foam based ultra-stiff and flexible metallic metamaterial. Carbon 2018, 137, 502–510. [Google Scholar] [CrossRef]
- Nautiyal, P.; Boesl, B.; Agarwal, A. The mechanics of energy dissipation in a three-dimensional graphene foam with macroporous architecture. Carbon 2018, 132, 59–64. [Google Scholar] [CrossRef]
- Wei, X.; Meng, Z.; Ruiz, L.; Xia, W.; Lee, C.; Kysar, J.W.; Hone, J.C.; Keten, S.; Espinosa, H.D. Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation. ACS Nano 2016, 10, 1820–1828. [Google Scholar] [CrossRef]
- Ruiz, L.; Xia, W.; Meng, Z.; Keten, S. A coarse-grained model for the mechanical behavior of multi-layer graphene. Carbon 2015, 82, 103–115. [Google Scholar] [CrossRef]
- Shen, Z.; Ye, H.; Zhou, C.; Kröger, M.; Li, Y. Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams. Nanotechnology 2018, 29, 104001. [Google Scholar] [CrossRef]
- Bao, Q.; Yang, Z.; Lu, Z.; He, X. Effects of graphene thickness and length distribution on the mechanical properties of graphene networks: A coarse-grained molecular dynamics simulation. Appl. Surf. Sci. 2021, 570, 151023. [Google Scholar] [CrossRef]
- Shang, J.-J.; Yang, Q.-S.; Liu, X. New Coarse-Grained Model and Its Implementation in Simulations of Graphene Assemblies. J. Chem. Theory Comput. 2017, 13, 3706–3714. [Google Scholar] [CrossRef]
- Liu, S.; Duan, K.; Li, L.; Wang, X.; Hu, Y. A multilayer coarse-grained molecular dynamics model for mechanical analysis of mesoscale graphene structures. Carbon 2021, 178, 528–539. [Google Scholar] [CrossRef]
- Brenner, D.W.; Shenderova, O.A.; Harrison, J.A.; Stuart, S.J.; Ni, B.; Sinnott, S.B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 2002, 14, 783–802. [Google Scholar] [CrossRef] [Green Version]
- de Tomas, C.; Suarez-Martinez, I.; Marks, N.A. Graphitization of amorphous carbons: A comparative study of interatomic potentials. Carbon 2016, 109, 681–693. [Google Scholar] [CrossRef] [Green Version]
- Souza, P.C.T.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grünewald, F.; Patmanidis, I.; Abdizadeh, H.; Bruininks, B.M.H.; Wassenaar, T.A.; et al. Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nat. Methods 2021, 18, 382–388. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, J.; Xu, B. Evaporation-driven crumpling and assembling of two-dimensional (2D) materials: A rotational spring—Mechanical slider model. J. Mech. Phys. Solids 2019, 133, 103722. [Google Scholar] [CrossRef]
- Mahdavi, S.M.; Adibnazari, S.; del Monte, F.; Gutiérrez, M.C. Compressive modulus and deformation mechanisms of 3DG foams: Experimental investigation and multiscale modeling. Nanotechnology 2021, 32, 485711. [Google Scholar] [CrossRef] [PubMed]
Materials | Synthesis Methods | Density (mg·cm−1) | Compression | Reference | |
---|---|---|---|---|---|
Strain (%) | Stress (kPa) | ||||
GA | Hydrothermal | 5.1 | 80 | 18 | [6] |
GA | Solvothermal | 3 | 90 | 5 | [7] |
GA | Solvothermal | 1.15 | 90 | 90 | [10] |
GA | 3D printing | 123 | 90 | 1200 | [9] |
GA | Hydrothermal | 8.3 | 93 | 50 | [8] |
GA | Chemical reduction | 16 | 90 | 17 | [57] |
GA | Hydrothermal | 10 | 95 | 28 | [58] |
GA | Hydrothermal | 8 | 99 | 700 | [59] |
GA | Hydrothermal | 6 | 99 | 1000 | [11] |
GA | In-situ assembly | <3 | 84 | 14.8 | [60] |
GA | freeze casting | 8.8 | 92 | 134.1 | [12] |
GA | freeze casting | - | 92 | 38 | [30] |
GA | Hydrothermal | 5.8~7.5 | 99.8 | 0.73 × 106 | [61] |
GA | Hydrothermal (template-based) | 2.2 | 99 | 87.5 | [14] |
GA | In-situ assembly | 3.0 to 6.3 | 97 | 4.7 × 103 | [62] |
GA | CVD | 11~70 | - | - | [63] |
GA | Crosslink | 17.7 | - | 43 | [27] |
GA | Hydrothermal | 5.07 | - | 5.4 | [25] |
GA | Hydrothermal | 35.25 | - | - | [64] |
GA | Hydrothermal | 6~8 | 92 | 4.5 × 106 | [65] |
GA | Chemical reduction | 3.7 | 99 | 20 | [66] |
Al aerogel | - | 17.7 | - | 43 | [67] |
SiO2 aerogel | - | 35.25 | - | - | [68] |
CNT sponge | - | 6~8 | 92 | 4.5 × 106 | [69] |
Model | Mapping Ratio | Relative Computational Efficiency * | Relative Precision | Reference |
---|---|---|---|---|
AIREBO force field | - | 1 | Highest | [136,137] |
Martini force field | 4:1 | 16 | High | [138] |
Square CG model | 245.47:1 | 60,256.53 | Low | [120] |
4:1 hexagonal CG model | 4:1 | 16 | High | [131] |
16:1 hexagonal CG model | 16:1 | 256 | low | [139] |
Tersoff CG model | 4:1 | 16 | High | [134] |
Multilayer CG model (N-1) | 2.04:1 | 4.16 | High | [135] |
Multilayer CG model (N-2) | 16.33:1 | 266.56 | High | [135] |
Multilayer CG model (N-3) | 38.27:1 | 1464.23 | High | [135] |
Multilayer CG model (N-4) | 73.47:1 | 5397.75 | High | [135] |
Modeling Approach | Model Density (mg·cm−3) | Predicted Modulus (kPa) | Experimental Modulus (kPa) | Reference |
---|---|---|---|---|
AAMD | 366.2 | 3.01 × 106 | - | [101] |
AAMD | 230 | 1.60 × 106 | - | [114] |
AAMD | 695 | 2.95 × 106 | - | [104] |
CGMD | 450 | 2.3 × 106 (tensile) | 213 (tensile) | [122] |
CGMD | 950~1500 | 0.4 × 106~2 × 106 | - | [132] |
CGMD | 200 | - | - | [125] |
CGMD | 1070–1600 | 0.285 × 106~2.86 × 106 | - | [133] |
FEM | 5.36~11.46 | 6~21 | 6~29 | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, P.; Zhu, H.; Borodich, F.; Peng, Q. A Review of the Mechanical Properties of Graphene Aerogel Materials: Experimental Measurements and Computer Simulations. Materials 2023, 16, 1800. https://doi.org/10.3390/ma16051800
Qi P, Zhu H, Borodich F, Peng Q. A Review of the Mechanical Properties of Graphene Aerogel Materials: Experimental Measurements and Computer Simulations. Materials. 2023; 16(5):1800. https://doi.org/10.3390/ma16051800
Chicago/Turabian StyleQi, Penghao, Hanxing Zhu, Feodor Borodich, and Qing Peng. 2023. "A Review of the Mechanical Properties of Graphene Aerogel Materials: Experimental Measurements and Computer Simulations" Materials 16, no. 5: 1800. https://doi.org/10.3390/ma16051800
APA StyleQi, P., Zhu, H., Borodich, F., & Peng, Q. (2023). A Review of the Mechanical Properties of Graphene Aerogel Materials: Experimental Measurements and Computer Simulations. Materials, 16(5), 1800. https://doi.org/10.3390/ma16051800