Corrosion Resistance of Nickel-Aluminum Sinters Produced by High-Pressure HPHT/SPS Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Starting Powders
2.2. Preparation of Powder Mixtures
2.3. Fabrication of Test Materials
2.3.1. Description of the High-Pressure HPHT/SPS Sintering Process
2.3.2. Process Parameters
2.4. Research Methods
3. Results and Discussion
3.1. Microstructural Analysis
3.2. Density and Hardness Measurements
3.3. Analysis of Corrosion Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deevi, S.C.; Sikka, V.K. Nickel and iron aluminides: An overview on properties, processing, and applications. Intermetallics 1996, 4, 357–375. [Google Scholar] [CrossRef]
- Stoloff, N.S.; Liu, C.T.; Deevi, S.C. Emerging application of intermetallics. Intermetallics 2000, 8, 1313–1320. [Google Scholar] [CrossRef]
- Sikka, V.K.; Mavity, J.T.; Anderson, K. Processing of nickel aluminides and their industrial applications. In High Temperature Aluminides and Intermetallics; Whang, S.H., Pope, D.P., Liu, C.T., Eds.; Elsevier: San Diego, CA, USA, 1992; pp. 712–721. [Google Scholar] [CrossRef] [Green Version]
- Scheppe, F.; Sahm, P.R.; Hermann, W.; Paul, U.; Preuhs, J. Nickel aluminides: A step toward industrial application. Mater. Sci. Eng. A 2002, 329–331, 596–601. [Google Scholar] [CrossRef]
- Frommeyer, G.; Rablbauer, R. High Temperature Materials Based on the Intermetallic Compound NiAl Reinforced by Refractory Metals for Advanced Energy Conversion Technologies. Steel Res. Int. 2008, 79, 507–513. [Google Scholar] [CrossRef]
- Jozwik, P.; Polkowski, W.; Bojar, Z. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities. Materials 2015, 8, 2537–2568. [Google Scholar] [CrossRef] [Green Version]
- Bochenek, K.; Basista, M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog. Aerosp. Sci. 2015, 79, 136–146. [Google Scholar] [CrossRef]
- Mitra, R.; Wanhill, R.J.H. Structural Intermetallics. In Aerospace Materials and Material Technologies; Prasad, N., Wanhill, R., Eds.; Indian Institute of Metals Series; Springer: Singapore, 2017; Volume 1, pp. 229–245. [Google Scholar] [CrossRef]
- Miracle, D.B. Overview No. 104. The physical and mechanical properties of NiAl. Acta Metall. Mater. 1993, 41, 649–684. [Google Scholar] [CrossRef]
- Darolia, R.; Lahrman, D.F.; Field, R.D.; Dobbs, J.R.; Chang, K.M.; Goldman, E.H.; Konitzer, D.G. Overview of NiAl Alloys for High Temperature Structural Applications. In Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour; Liu, C.T., Cahn, R.W., Sauthoff, G., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1992; Volume 213, pp. 679–698. [Google Scholar] [CrossRef]
- Darolia, R. NiAl alloys for high-temperature structural applications. JOM 1991, 43, 44–49. [Google Scholar] [CrossRef]
- Lasalmonie, A. Intermetallics: Why is it so difficult to introduce them in gas turbine engines? Intermetallics 2006, 14, 1123–1129. [Google Scholar] [CrossRef]
- Liu, C.T.; White, C.L.; Horton, J.A. Effect of boron on grain-boundaries in Ni3Al. Acta Metall. 1985, 33, 213–229. [Google Scholar] [CrossRef] [Green Version]
- Shevtsova, L.I.; Ogneva, T.S.; Mul, D.O.; Esikov, M.A.; Larichkin, A.Y.; Malikov, V.N. Boron-modified Ni3Al intermetallic compound formed by spark plasma sintering of mechanically activated Ni and Al Powders. IOP Conf. Ser. Mater. Sci. Eng. 2016, 124, 01239. [Google Scholar] [CrossRef] [Green Version]
- Hyjek, P.; Sulima, I.; Wierzbiński, S. Ductilization of Ni3Al by alloying with boron and zirconium. Arch. Mater. Sci. Eng. 2009, 40, 69–74. [Google Scholar]
- Hyjek, P.; Sulima, I.; Malczewski, P. Mechanical properties and corrosion resistance of cast NiAl alloys with the addition of Ti. Metall. Foundry Eng. 2015, 41, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Murty, B.S.; Joardar, J.; Pabi, S.K. Influence of Fe and Cr on the disordering behavior of mechanically alloyed NiAl. Nanostruct. Mater. 1996, 7, 691–697. [Google Scholar] [CrossRef]
- Garcia-Galán, S.; Arámburo-Pérez, G.; González-Rivera, C.; Juárez-Islas, J. The effect of Cu-macroalloying on β-NiAl intermetallic compound obtained by mechanical alloying. J. Mater. Process. Technol. 2003, 143–144, 551–554. [Google Scholar] [CrossRef]
- Hu, X.; Ma, J.; Dou, H.; Niu, Y.; Zhang, Y.; Song, Q. Effects of C impurities on the elastic properties of NiAl intermetallics. Prog. Nat. Sci. Mater. Int. 2014, 24, 637–641. [Google Scholar] [CrossRef] [Green Version]
- Azhagarsamy, P.; Sekar, K.; Murali, K.P. Nickel Aluminide intermetallic composites fabricated by various processing routes—A review. Mater. Sci. Technol. 2022, 38, 556–571. [Google Scholar] [CrossRef]
- Awotunde, M.A.; Ayodele, O.O.; Adegbenjo, A.O.; Okoro, A.M.; Shongwe, M.B.; Olubambi, P.A. NiAl intermetallic composites—A review of processing methods, reinforcements and mechanical properties. Int. J. Adv. Manuf. Technol. 2019, 104, 1733–1747. [Google Scholar] [CrossRef]
- Ning, H.; Wang, D.; Wang, B.; Liu, G. Investigations on the NiAl–Cr(Mo) eutectic alloy with optimized microstructure and improved room-temperature compressive properties. Mater. Sci. Eng. A 2021, 813, 141138. [Google Scholar] [CrossRef]
- Cheng, T.; Sun, J. NiAl sintered under high pressure and at low temperature. Scr. Metall. Et Mater. 1994, 30, 247–251. [Google Scholar] [CrossRef]
- Xu, G.H.; Zhang, K.F.; Huang, Z.Q. The synthesis and characterization of ultrafine grain NiAl intermetallic. Adv. Powder Technol. 2012, 23, 366–371. [Google Scholar] [CrossRef]
- Plazanet, L.; Nardou, F. Reaction process during relative sintering of NiAl. J. Mater. Sci. 1998, 33, 2129–2136. [Google Scholar] [CrossRef]
- Školáková, A.; Körberová, J.; Kratochvíl, P.; Salvetr, P.; Deduytsche, D.; Novák, P. A comprehensive description of reactions between nickel and aluminum powders during reactive sintering. Mater. Chem. Phys. 2021, 271, 124941. [Google Scholar] [CrossRef]
- Zhao, H.L.; Qiu, F.; Jin, S.B.; Jiang, Q.C. High work-hardening effect of the pure NiAl intermetallic compound fabricated by the combustion synthesis and hot pressing technique. Mater. Lett. 2011, 65, 2604–2606. [Google Scholar] [CrossRef]
- Rigney, J.D.; Patankar, S.; Lewandowski, J.J. Properties of monolithic and composite NiAl processed by hydrostatic extrusion and vacuum hot-pressing. Compos. Sci. Technol. 1994, 52, 163–172. [Google Scholar] [CrossRef]
- Wang, S.; He, D.; Zou, Y.; Wei, J.; Lei, L.; Li, Y.; Wang, J.; Wang, W.; Kou, Z. High-pressure and high-temperature sintering of nanostructured bulk NiAl materials. J. Mater. Res. 2009, 24, 2089–2096. [Google Scholar] [CrossRef] [Green Version]
- Hyjek, P.; Sulima, I.; Malczewski, P.; Jaworska, L. Application of HP-HT method in the manufacture of NiAl phase. J. Achiev. Mater. Manuf. Eng. 2012, 55, 700–705. [Google Scholar]
- Michalcová, A.; Vojtech, D.; Kubatík, T.F.; Novák, P.; Dvorák, P.; Svobodová, P.; Marek, I. NiAl Intermetallic prepared with reactive sintering and subsequent powder-metallurgical plasma-sintering compaction. Mater. Tehnol. 2016, 50, 447–450. [Google Scholar] [CrossRef]
- Abedi, M.; Kuskov, K.; Moskovskikh, D.; Zakharova, E.V.; Belov, D.; Mukasyan, A. Reactive spark plasma sintering of NiAl intermetallics: A comparative study. Intermetallics 2022, 152, 107750. [Google Scholar] [CrossRef]
- Hyjek, P.; Sulima, I.; Malczewski, P.; Bryła, K.; Jaworska, L. Effect of Reactive SPS on the Microstructure and Properties of a Dual-Phase Ni-Al Intermetallic Compound and Ni-Al-TiB2 Composite. Materials 2020, 13, 5668. [Google Scholar] [CrossRef]
- Tokita, M. Progress of Spark Plasma Sintering (SPS) Method, Systems, Ceramics Applications and Industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Tokita, M. Spark Plasma Sintering (SPS) Method, Systems, and Applications. In Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties, 2nd ed.; Somiya, S., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 1149–1177. [Google Scholar] [CrossRef]
- Licheri, R.; Orrù, R.; Musa, C.; Locci, A.M.; Cao, G. Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis. J. Alloys Compd. 2009, 478, 572–578. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Luo, J.; Wang, S.; Liang, B.; Chen, W. Microstructure, properties and toughening mechanisms of MoSi2@ZrO2 core shell composites prepared by spark plasma sintering. Mater. Charact. 2023, 195, 112510. [Google Scholar] [CrossRef]
- Hyjek, P.; Sulima, I.; Jaworska, L. Application of SHS in the Manufacture of (NiAl/Ni3Al)/TiB2 Composite. Metall. Mater. Trans. A 2019, 50, 3724–3735. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Liu, J.-J.; Zhang, G.-J.; Fu, Z.-Y. Tuning the combustion process during reactive sintering of high-performance ceramics by employing solid solutions as reactants. J. Eur. Ceram. Soc. 2021, 41, 101–113. [Google Scholar] [CrossRef]
- Rominiyi, A.L.; Mashinini, P.M. Nanoindentation study of mechanical and wear properties of spark plasma sintered Ti-6Ni-xTiCN composites. Ceram. Int. 2023, 49, 2194–2203. [Google Scholar] [CrossRef]
- Guignard, J.; Prakasam, M.; Largeteau, A. High Pressure (HP) in Spark Plasma Sintering (SPS) Processes: Application to the Polycrystalline Diamond. Materials 2022, 15, 4804. [Google Scholar] [CrossRef]
- Balima, F.; Largeteau, A. Phase transformation of alumina induced by high pressure spark plasma sintering (HP-SPS). Scr. Mater. 2019, 158, 20–23. [Google Scholar] [CrossRef]
- Prakasam, M.; Balima, F.; Cygan, S.; Klimczyk, P.; Jaworska, L.; Largeteau, A. Ultrahigh pressure SPS (HP-SPS) as new syntheses and exploration tool in materials science. In Spark Plasma Sintering: Current Status, New Developments and Challenges; Cao, G., Estournès, C., Garay, J., Orrù, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–218. [Google Scholar] [CrossRef]
- Yung, D.L.; Cygan, S.; Antonov, M.; Jaworska, L.; Hussainova, I. Ultra high-pressure spark plasma sintered ZrC-Mo and ZrC-TiC composites. Int. J. Refract. Met. Hard Mater. 2016, 61, 201–206. [Google Scholar] [CrossRef]
- Knaislová, A.; Novák, P.; Cygan, S.; Jaworska, L.; Cabibbo, M. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti–Al–Si Alloys. Materials 2017, 10, 465. [Google Scholar] [CrossRef] [Green Version]
- Eremets, M.I. High Pressure Experimental Methods; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- Manghnani, M.; Ming, L.; Jamieson, J. Prospects of using synchrotron radiation facilities with diamond-anvil cells: High-pressure research applications in geophysics. Nucl. Instrum. Methods 1980, 177, 219–226. [Google Scholar] [CrossRef]
- Brazhkin, V.V. High-pressure synthesized materials: Treasures and hints. High Press. Res. 2007, 27, 333–351. [Google Scholar] [CrossRef]
- Matizamhuka, W. High-Pressure High-Temperature (HPHT) Synthesis of Functional Materials. In Sintering of Functional Materials; Shishkovsky, I., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Klimczyk, P. SiC-Based Composites Sintered with High Pressure Method. In Silicon Carbide: Materials, Processing and Applications in Electronic Devices; Mukherjee, M., Ed.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Munir, Z.A.; Anselmi-Tamburini, U. Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion. Mater. Sci. Rep. 1989, 3, 277–365. [Google Scholar] [CrossRef]
- Morsi, K. Review: Reaction synthesis processing of Ni–Al intermetallic materials. Mater. Sci. Eng. A 2001, 299, 1–15. [Google Scholar] [CrossRef]
- Liu, E.; Jia, J.; Bai, Y.; Wang, W.; Gao, Y. Study on preparation and mechanical property of nanocrystalline NiAl intermetallic. Mater. Des. 2014, 53, 596–601. [Google Scholar] [CrossRef]
- Wen, J.; Cui, H.; Wei, N.; Song, X.; Zhang, G.; Wang, C.; Song, Q. Effect of phase composition and microstructure on the corrosion resistance of Ni-Al intermetallic compounds. J. Alloy. Compd. 2017, 695, 2424–2433. [Google Scholar] [CrossRef]
- Osório, W.R.; Peixoto, L.C.; Canté, M.V.; Garcia, A. Electrochemical corrosion characterization of Al–Ni alloys in a dilute sodium chloride solution. Electrochim. Acta 2010, 55, 4078–4085. [Google Scholar] [CrossRef]
- Zhang, Z.; Akiyama, E.; Watanabe, Y.; Katada, Y.; Tsuzaki, K. Effect of α-Al/Al3Ni microstructure on the corrosion behaviour of Al-5.4wt% Ni alloy fabricated by equal-channel angular pressing. Corros. Sci. 2007, 49, 2962–2972. [Google Scholar] [CrossRef]
- Starosta, R. Corrosion of Ni-Al and Ni-Al-Al2O3 Flame Sprayed Coatings of „CastoDyn 8000” System in 0.01 M H2SO4 and 3.5% NaCl Solutions. Solid State Phenom. 2011, 183, 185–192. [Google Scholar] [CrossRef]
- Starosta, R. Corrosion of Ni-Al and Ni-Al-Al2O3 Plasma Sprayed Coatings in 0.01 M H2SO4 and 3.5% NaCl Solutions. Solid State Phenom. 2013, 199, 390–395. [Google Scholar] [CrossRef]
- Philpot, K.A.; Munir, Z.A.; Holt, J.B. An investigation of the synthesis of nickel aluminides through gasless combustion. J. Mater. Sci. 1987, 22, 159–169. [Google Scholar] [CrossRef]
- Biswas, A.; Roy, S.K.; Gurumurthy, K.R.; Prabhu, N.; Banerjee, S. A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode. Acta Mater. 2002, 50, 757–773. [Google Scholar] [CrossRef]
- Klimczyk, P.; Figiel, P.; Petrusha, I.; Olszyna, A. Cubic boron nitride based composites for cutting applications. J. Achiev. Mater. Manuf. Eng. 2011, 44, 198–204. [Google Scholar]
- Ormaniec, A.; Benko, E.; Klimczyk, P.; Gorczynska-Zawislan, W. Investigations of the rock-polymer composites as a gasket for HPHT apparatus. Fibres Text. East. Eur. 2005, 13, 79–81. [Google Scholar]
- Yin, L.-W.; Zou, Z.-D.; Li, M.-S.; Liu, Y.-X.; Hao, Z.-Y. Structural imperfections in synthetic diamond single crystals prepared by the HPHT method. Appl. Phys. A 2000, 71, 457–459. [Google Scholar] [CrossRef]
- Osipov, A.S.; Klimczyk, P.; Cygan, S.; Melniychuk, Y.A.; Petrusha, I.A.; Jaworska, L.; Bykov., A.I. Diamond-CaCO3 and diamond-Li2CO3 materials sintered using the HPHT method. J. Eur. Ceram. Soc. 2017, 37, 2553–2558. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; Ji, H.; Sun, K.; Li, Z. Effect of SiC whiskers on mechanical properties of thermally stable polycrystalline diamond prepared by HPHT sintering. Diam. Relat. Mater. 2018, 90, 54–61. [Google Scholar] [CrossRef]
- Tokita, M. Mechanism of spark plasma sintering. In Proceedings of the NEDO International Symposium on Functionally Graded Materials, Tokyo, Japan, 21–22 October 1999; Volume 22, pp. 1–13. [Google Scholar]
- Groza, J.R.; Zavaliangos, A. Sintering activation by external electrical field. Mater. Sci. Eng. 2000, A287, 171–177. [Google Scholar] [CrossRef]
- Mamedov, V. Spark plasma sintering as advanced PM sintering method. Powder Metall. 2002, 45, 322–328. [Google Scholar] [CrossRef]
- Li, R.; Dong, Z.; Win, K.; Khor, K. Novel Ti based metal matrix composites reinforced with Al–Cr–Fe quasicrystals approximants. Mater. Sci. Technol. 2015, 31, 688–694. [Google Scholar] [CrossRef]
- Biswas, A.; Roy, S.K. Comparison between the microstructural evolutions of two modes of SHS of NiAl: Key to a common reaction mechanism. Acta Mater. 2004, 52, 257–270. [Google Scholar] [CrossRef]
- Halevy, I.; Salhov, S.; Broide, A.; Yue, A.F.; Hu, J.; Yeheskel, O.; Yaar, I. High pressure study and electronic structure of NiAl and Ni3Al compounds. In Proceedings of the Joint 20th AIRAPT and 43rd EHPRG International Conference on High Pressure Science and Technology 2005, Karlsruhe, Germany, 27 June–1 July 2005. [Google Scholar]
- Cui, H.; Wei, N.; Zeng, L.; Wang, X.; Tang, H. Microstructure and formation mechanism of Ni-Al intermetallic compounds fabricated by reaction synthesis. Trans. Nonferrous Met. Soc. China 2013, 23, 1639–1645. [Google Scholar] [CrossRef]
- Cheng, T. Microstructures and room temperature mechanical properties of NiAI prepared by high pressure reaction sintering. J. Mater. Sci. 1996, 31, 1997–2007. [Google Scholar] [CrossRef]
- Fan, Q.C.; Chai, H.F.; Jin, Z.H. Dissolution–precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide. Intermetallics 2001, 9, 609–619. [Google Scholar] [CrossRef]
- Dumez, M.-C.; Marin-Ayral, R.-M.; Tedenac, J.-C. The role of experimental parameters in combustion synthesis of NiAl under high gas pressure. J. Alloy. Compd. 1998, 268, 141–151. [Google Scholar] [CrossRef]
- Cymerman, K.; Michalski, A. NiAl and Ni3Al sinters produced by pulse plasma sintering with the shs reaction. Ceram. Mater. 2014, 66, 4–9. [Google Scholar]
- Thompson, R.J.; Zhao, J.-C.; Hemker, K.J. Effect of ternary elements on a martensitic transformation in β-NiAl. Intermetallics 2010, 18, 796–802. [Google Scholar] [CrossRef]
- Ozdemir, O.; Zeytin, S.; Bindal, C. Characterization of two-phase nickel aluminides produced by pressure-assisted combustion synthesis. Vacuum 2007, 82, 311–315. [Google Scholar] [CrossRef]
- Hyjek, P.; Sulima, I.; Jaworska, L. Characteristics of the NiAl/Ni3Al Matrix Composite with TiB2 Particles Fabricated by High Pressure-High Temperature Sintering. Arch. Metall. Mater. 2017, 62, 1511–1520. [Google Scholar] [CrossRef] [Green Version]
- Malec, W.; Rzyman, K.; Czepelak, M.; Wala, A. An Effect of Chromium on Mechanical Properties of the Ni3Al-Based Alloys and Sinters in Compression Tests. Arch. Metall. Mater. 2011, 56, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Camagu, S.T.; Mathabathe, N.M.; Motaung, D.E.; Muller, T.F.G.; Arendse, C.J.; Bolokang, A.S. Investigation into the thermal behaviour of the B2–NiAl intermetallic alloy produced by compaction and sintering of the elemental Ni and Al powders. Vacuum 2019, 169, 108919. [Google Scholar] [CrossRef]
- Rahaei, M.B.; Kazemzadeh, A.; Rad, R.Y.; Ebadzadeh, T. Sintering behaviour of NiAl– x TiC nanostructured composite powders (x=0, 1, 3, 6 and 10 vf%) during hot pressing. Powder Metall. 2013, 56, 67–76. [Google Scholar] [CrossRef]
- Nosewicz, S.; Jurczak, G.; Wejrzanowski, T.; Ibrahim, S.H.; Grabias, A.; Węglewski, W.; Kaszyca, K.; Rojek, J.; Chmielewski, M. Thermal conductivity analysis of porous NiAl materials manufactured by spark plasma sintering: Experimental studies and modelling. Int. J. Heat Mass Transf. 2022, 194, 123070. [Google Scholar] [CrossRef]
- Sefer, B.; Virtanen, S. Electrochemical and corrosion study of as-cast NixAly intermetallic alloys: Influence of alloy composition and electrolyte pH. Corros. Sci. 2019, 150, 127–135. [Google Scholar] [CrossRef]
- Itzhak, D.; Aghion, E. Corrosion behaviour of hot-pressed austenitic stainless steel in H2SO4 solutions at room temperature. Corros. Sci. 1983, 23, 1085–1094. [Google Scholar] [CrossRef]
- Fredriksson, W.; Petrini, D.; Edström, K.; Björefors, F.; Nyholm, L. Corrosion resistances and passivation of powder metallurgical and conventionally cast 316L and 2205 stainless steels. Corros. Sci. 2013, 67, 268–280. [Google Scholar] [CrossRef]
- Abd El Rehim, S.S.; Abd El Wahaab, S.M.; Abd El Meguid, E.A. Potentiodynamic behaviour of the nickel electrode in acid media. Surf. Coat. Technol. 1986, 29, 325–333. [Google Scholar] [CrossRef]
- de Gromoboy, T.S.; Shreir, L.L. The formation of nickel oxides during the passivation of nickel in relation to the potential/pH diagram. Electrochim. Acta 1966, 11, 895–904. [Google Scholar] [CrossRef]
- Barbosa, M.R.; Real, S.G.; Vilche, J.R.; Arvia, A.J. Comparative Potentiodynamic Study of Nickel in Still and Stirred Sulfuric Acid-Potassium Sulfate Solutions in the 0.4–5.7 pH Range. J. Electrochem. Soc. 1988, 135, 1077. [Google Scholar] [CrossRef]
- Scherer, J.; Ocko, B.M.; Magnussen, O.M. Structure, dissolution, and passivation of Ni(111) electrodes in sulfuric acid solution: An in situ STM, X-ray scattering, and electrochemical study. Electrochim. Acta 2003, 48, 1169–1191. [Google Scholar] [CrossRef]
- Vargel, C. Corrosion of Aluminium; Elsevier Science: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Otero, E.; Pardo, A.; Utrilla, M.V.; Sáenz, E.; Álvarez, J.F. Corrosion behaviour of AISI 304L and 316L stainless steels prepared by powder metallurgy in the presence of sulphuric and phosphoric acid. Corros. Sci. 1998, 40, 1421–1434. [Google Scholar] [CrossRef]
- Geenen, K.; Röttger, A.; Theisen, W. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting. Mater. Corros. 2017, 68, 764–775. [Google Scholar] [CrossRef]
- Gabe, D.R. Corrosion and Protection of Sintered Metal Parts. Powder Metall. 1977, 20, 227–231. [Google Scholar] [CrossRef]
- Jüttner, K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim. Acta 1990, 35, 1501–1508. [Google Scholar] [CrossRef]
- Hsu, C.H.; Mansfeld, F. Concernng the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 2001, 57, 747–748. [Google Scholar] [CrossRef]
- Fitzner, K.; Stępień, M. Determination of the Dielectric Constant of Niobium Oxide by Using Combined EIS and Ellipsometric Methods. Materials 2023, 16, 798. [Google Scholar] [CrossRef]
- Maocheng, Y.A.N.; Jin, X.U.; Libao, Y.U.; Tangqing, W.U.; Cheng, S.U.N.; Wei, K.E. EIS analysis on stress corrosion initiation of pipeline steel under disbonded coating in near-neutral pH simulated soil electrolyte. Corros. Sci. 2016, 110, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Stępień, M.; Sulima, I.; Hyjek, P.; Kowalik, R. Evaluation of the corrosion resistance of spark plasma sintered stainless steel 316L matrix composites with zirconium diboride in sulfuric acid. Arch. Civ. Mech. Eng. 2022, 22, 127. [Google Scholar] [CrossRef]
Alloy Designation (According to at.% Al) | Density ρ (g/cm3) | Measurement Error (g/cm3) | Hardness HV10 | Measurement Error HV10 |
---|---|---|---|---|
NiAl25 | 7.38 | ± 0.02 (0.3%) | 336 | ± 2.1 (0.6%) |
NiAl37 | 6.67 | 399 | ± 5.5 (1.4%) | |
NiAl50 | 5.8 | 486 | ± 2.8 (0.6%) |
Sample | NiAl25 | NiAl37 | NiAl50 | Al | Ni | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 h | 24 h | 0 h | 24 h | 0 h | 24 h | 0 h | 24 h | 0 h | 24 h | |
icorr [uA/cm2] | 25.97 | 9.10 | 35.05 | 7.52 | 52.40 | 13.15 | 15.92 | 18.11 | 30.64 | 6.14 |
ρ [g/cm3] | 7.380 | 6.670 | 5.800 | 2.700 | 8.908 | |||||
EW [g] | 22.56 | 19.74 | 17.14 | 8.99 | 29.35 | |||||
CR [mm per year] | 0.260 | 0.091 | 0.339 | 0.073 | 0.506 | 0.127 | 0.173 | 0.197 | 0.330 | 0.066 |
Sample | Time [min] | Rs [Ω∙cm2] | Rp [Ω∙cm2]2 | C [µF∙cm −2] | n | Chi-sqr × 10−3 |
---|---|---|---|---|---|---|
Ni Al25 | 5 | 11.04 | 482 | 46.3 | 0.9108 | 3.03 |
60 | 11.31 | 1074 | 36.9 | 0.9215 | 1.58 | |
120 | 11.32 | 1097 | 36.1 | 0.9240 | 1.68 | |
240 | 11.20 | 1238 | 35.1 | 0.9261 | 1.96 | |
480 | 10.96 | 1586 | 30.3 | 0.9363 | 1.23 | |
960 | 10.56 | 1362 | 37.1 | 0.9302 | 1.02 | |
1440 | 10.36 | 1330 | 44.6 | 0.9255 | 0.98 | |
Ni Al37 | 5 | 12.46 | 737 | 40.2 | 0.9351 | 0.93 |
60 | 12.65 | 1560 | 29.0 | 0.9437 | 0.62 | |
120 | 12.67 | 1764 | 25.3 | 0.9491 | 1.74 | |
240 | 12.53 | 2619 | 21.3 | 0.9545 | 1.34 | |
480 | 12.31 | 2762 | 19.7 | 0.9590 | 1.13 | |
960 | 12.08 | 3016 | 26.4 | 0.9480 | 1.03 | |
1440 | 11.85 | 2231 | 30.1 | 0.9463 | 1.03 | |
Ni Al50 | 5 | 11.3 | 752 | 35.7 | 0.9518 | 1.79 |
60 | 11.44 | 1296 | 28.1 | 0.9470 | 0.99 | |
120 | 11.52 | 1514 | 25.7 | 0.9513 | 1.82 | |
240 | 11.49 | 1791 | 24.8 | 0.9522 | 2.16 | |
480 | 11.36 | 2022 | 23.6 | 0.9594 | 3.61 | |
960 | 11.17 | 1713 | 27.3 | 0.9645 | 3.78 | |
1440 | 10.99 | 1743 | 33.7 | 0.9622 | 4.03 | |
Ni | 5 | 16.74 | 712 | 63.9 | 0.8976 | 0.45 |
60 | 16.88 | 1339 | 41.7 | 0.9150 | 0.18 | |
120 | 16.89 | 1189 | 39.0 | 0.9150 | 0.26 | |
240 | 16.8 | 1273 | 37.7 | 0.9142 | 0.28 | |
480 | 16.73 | 2965 | 27.0 | 0.9452 | 0.49 | |
960 | 16.69 | 2065 | 32.4 | 0.9427 | 0.53 | |
1440 | 16.36 | 2777 | 44.4 | 0.9363 | 0.90 | |
Al | 5 | 17.66 | 1420 | 52.6 | 0.8784 | 0.74 |
60 | 18.06 | 617 | 60.0 | 0.9152 | 0.31 | |
120 | 18.46 | 700 | 57.8 | 0.9199 | 0.27 | |
240 | 18.44 | 714 | 57.1 | 0.9208 | 0.28 | |
480 | 18.9 | 933 | 44.8 | 0.9277 | 0.25 | |
960 | 18.46 | 1756 | 16.0 | 0.9428 | 0.24 | |
1440 | 18.16 | 1926 | 14.3 | 0.9457 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyjek, P.; Stępień, M.; Kowalik, R.; Sulima, I. Corrosion Resistance of Nickel-Aluminum Sinters Produced by High-Pressure HPHT/SPS Method. Materials 2023, 16, 1907. https://doi.org/10.3390/ma16051907
Hyjek P, Stępień M, Kowalik R, Sulima I. Corrosion Resistance of Nickel-Aluminum Sinters Produced by High-Pressure HPHT/SPS Method. Materials. 2023; 16(5):1907. https://doi.org/10.3390/ma16051907
Chicago/Turabian StyleHyjek, Paweł, Michał Stępień, Remigiusz Kowalik, and Iwona Sulima. 2023. "Corrosion Resistance of Nickel-Aluminum Sinters Produced by High-Pressure HPHT/SPS Method" Materials 16, no. 5: 1907. https://doi.org/10.3390/ma16051907
APA StyleHyjek, P., Stępień, M., Kowalik, R., & Sulima, I. (2023). Corrosion Resistance of Nickel-Aluminum Sinters Produced by High-Pressure HPHT/SPS Method. Materials, 16(5), 1907. https://doi.org/10.3390/ma16051907