Study on Hot Tensile Deformation Behavior and Hot Stamping Process of GH3625 Superalloy Sheet
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Effect of Temperature and Holding Time on Grain Growth
3.2. Grain Growth Model of GH3625 during Heating
3.3. Hot Tensile Deformation Behavior
3.4. Plasticity at High Temperatures
3.5. Production Verification
4. Conclusions
- The grain size of the GH3625 superalloy increased rapidly, and a mixed structure appeared when the temperature reached 1150 °C. The heating temperature played a greater influence on grain growth than the holding time. During the hot stamping process, the heating temperature and holding time of the GH3625 sheet can be set to the range of 950–1100 °C and 5 min, respectively.
- The work hardening model (WHM) was developed to predict WH curves. A modified Arrhenius model, taking the deviation degree R (R-MAM) into account, were developed in order to predict the DRX, DRV or TDRV curves. The results demonstrated that both models have good prediction accuracy for separate flow curves.
- The GH3625 sheet has good formability when the deformation conditions are in the range of 800~850 °C and 0.1~10 s−1. Moreover, the plasticity of the GH3625 sheet drops with the increasing temperature and decreasing strain rate, which is mainly attributed to the increased precipitation of second-phase particles at higher temperatures and lower strain rates. In comparison with the as-received sheet, the yield strength and tensile strength of the stamping parts increased by 65% and 17%, respectively, and the elongation at break was decreased by 6%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, H.T.; Liu, R.R.; Liu, Z.C.; Zhou, X.; Peng, Q.Z.; Zhong, F.H.; Peng, Y. Hot deformation characteristics of GH3625 and development of a processing map. J. Mater. Eng. Perform. 2013, 22, 2515–2521. [Google Scholar] [CrossRef]
- Rodriguez, D.; Merwin, A.; Karmiol, Z.; Chidambaram, D. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water. Appl. Surf. Sci. 2017, 404, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zheng, W.-J.; Xiang, J.-Z.; Song, Z.-G.; Pu, E.-X.; Fang, H. Grain growth behavior of inconel 625 superalloy. J. Iron Steel Res. Int. 2016, 23, 1111–1118. [Google Scholar] [CrossRef]
- Mittra, J.; Dubey, J.S.; Banerjee, S. Acoustic emission technique used for detecting early stagesof precipitation during aging of Inconel 625. Scr. Mater. 2003, 49, 1209–1214. [Google Scholar] [CrossRef]
- Shankar, V.; Bhanu Sankara Rao, K.; Mannan, S.L. Microstructure and mechanical properties of Inconel 625 superalloy. J. Nucl. Mater. 2001, 288, 222–232. [Google Scholar] [CrossRef]
- Dinda, G.P.; Dasgupta, A.K.; Mazumder, J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructuralevolution and thermal stability. Mater. Sci. Eng. A 2009, 509, 98–104. [Google Scholar] [CrossRef]
- Guo, Q.; Li, D.; Guo, S.; Peng, H.; Jie, H. The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy. J. Nucl. Mater. 2011, 414, 440–450. [Google Scholar] [CrossRef]
- Ahmad, M.; Akhter, J.I.; Shahzad, M.; Akhtar, M. Craching During Solidification of Diffusion Bonded Inconel 625 in the Presence ofZircaloy-4 Interlayer. J. Alloys Compd. 2008, 457, 131–134. [Google Scholar] [CrossRef]
- Shi, Z.-X.; Yan, X.-F.; Duan, C.-H.; Zha, M.-H. Effect of strain rate on hot deformation characteristics of GH690 superalloy. Trans. Nonferrous Met. Soc. China 2017, 27, 538–550. [Google Scholar] [CrossRef]
- Liu, D.; Cheng, X.; Zhang, X.; Ding, Y. Effects of heating and hot extrusion process on microstructure and properties of inconel 625 alloy. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2016, 31, 1368–1376. [Google Scholar] [CrossRef]
- Guo, S.; Li, D.; Pen, H.; Hu, J. Hot deformation and processing maps of Inconel 690 superalloy. J. Nucl. Mater. 2011, 410, 52–58. [Google Scholar] [CrossRef]
- Chen, X.M.; Lin, Y.C.; Wen, D.X.; Zhang, J.L.; He, M. Dynamicrecrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater. Des. 2014, 57, 568–577. [Google Scholar] [CrossRef]
- Ji, Y.Q.; Qu, S.-D.; Han, W.X. Hot deformation and processing map of GH3535 superalloy. Trans. Nonferrous Met. Soc. China 2015, 25, 88–94. [Google Scholar] [CrossRef]
- Rai, S.K.; Kumar, A.; Shankar, V.; Jayakumar, T. Characterization of Microstructure in Inconel 625 Using X-ray Diffraction Peak Broadeningand Lattice Parameter Measurements. Scr. Mater. 2014, 51, 59–63. [Google Scholar] [CrossRef]
- Ferrer, L.; Pieraggi, B.; Uginet, J.F. Microstructual Evolution during thermomechanical Proeessing of Alloy 625. Mater. Met. Mater. Soc. 2016, 1991, 217–228. [Google Scholar]
- Jia, Z.; Gao, Z.-X.; Ji, J.-J.; Liu, D.-X.; Guo, T.-B.; Ding, Y.-T. High-temperature deformation behavior and processing map of theas-cast Inconel 625 alloy. Rare Met. 2020, 40, 2083–2091. [Google Scholar] [CrossRef]
- Maj, P.; Zdunek, J.; Mizera, J.; Kurzydlowski, K.J.; Sakowicz, B.; Kaminski, M. Microstructure and Strain-Stress Analysis of the Dynamic Strain Aging in Inconel 625 at High Temperature. Met. Mater. Int. 2017, 23, 54–67. [Google Scholar] [CrossRef]
- Li, D.; Guo, Q.M.; Guo, S.L.; Peng, H.J.; Wu, Z.G. The microstructure evolution and nucleation mechanismsof dynamic recrystallization in hot-deformed Inconel 625 superalloy. Mater. Des. 2011, 32, 696–705. [Google Scholar] [CrossRef]
- Chen, F.; Li, K.; Tang, B.; Liu, D.; Zhong, H.; Li, J. Deformation Behavior and Microstructural Evolution of Inconel 625 Superalloy during the Hot Compression Process. Metals 2021, 11, 824. [Google Scholar] [CrossRef]
- Gao, Y.; Ding, Y.; Chen, J.; Xu, J.; Ma, Y.; Wang, X. Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy. Mater. Sci. Eng. A 2019, 767, 138361. [Google Scholar] [CrossRef]
- Liu, X.; Fan, J.; Zhang, P.; Xie, J.; Chen, F.; Liu, D.; Yuan, R.; Tang, B.; Kou, H.; Li, J. Temperature dependence of deformation behavior, microstructure evolution and fracture mechanism of Inconel 625 superalloy. J. Alloys Compd. 2021, 869, 159342. [Google Scholar] [CrossRef]
- Badrish, C.A.; Kotkunde, N.; Salunke, O.; Singh, S.K. Study of Anisotropic Material Behavior for Inconel 625 Alloy at Elevated Temperatures. Mater. Today Proc. 2019, 18, 2760–2766. [Google Scholar] [CrossRef]
- Godasu, A.K.; Prakash, U.; Mula, S. Flow stress characteristics and microstructural evolution of cast superalloy 625 during hot deformation. J. Alloys Compd. 2020, 844, 156200. [Google Scholar] [CrossRef]
- Quan, G.Z.; Zhang, P.; Ma, Y.-Y.; Zhang, Y.-Q.; Lu, C.-L.; Wang, W.-Y. Characterization of grain growth behaviors by BP-ANN and Sellars models for nickle-base superalloy and their comparisons. Trans. Nonferrous Met. Soc. China 2020, 30, 2435–2448. [Google Scholar] [CrossRef]
- Liu, T.; Dong, J.S.; Wang, L.; Li, Z.J.; Zhou, X.T.; Lou, L.H.; Zhang, J. Effect of long-term thermal exposure on microstructure and stress rupture properties of GH3535 superalloy. J. Mater. Sci. Technol. 2015, 31, 269–279. [Google Scholar] [CrossRef]
- Long, S.; Xia, Y.-F.; Wang, P.; Zhou, Y.-T.; Gong-ye, F.; Zhou, J. Constitutive modelling, dynamic globularization behavior and processing map for Ti-6Cr-5Mo-5V-4Al alloy during hot deformation. J. Alloys Compd. 2019, 796, 65–76. [Google Scholar] [CrossRef]
- Long, S.; Xia, Y.; Hu, J.; Zhang, J.; Zhou, J.; Zhang, P.; Cui, M. Hot deformationbehavior and microstructure evolution of Ti-6Cr-5Mo-5V-4Al alloy during hot compression. Vacuum 2019, 160, 171–180. [Google Scholar] [CrossRef]
- Kong, R.; Meng, B.; Ma, X.; Li, Y.; Zheng, L.; Zhu, Y.; Wan, M. Hot deformation behavior and microstructure evolution of Inconel 625 superalloy sheet. J. Alloys Compd. 2022, 915, 165367. [Google Scholar] [CrossRef]
- Peng, S.; Zhou, J.; Zhang, M.; Zhang, K.; Liu, J.; Zhang, J. Fundamental research and numerical simulation of new hot stamping tool manufactured by surfacing technology. Int. J. Adv. Manuf. Technol. 2020, 80, 1807–1814. [Google Scholar] [CrossRef]
- Xu, Y.; Shan, Z.D. Design parameter investigation of cooling systems for UHSS hot stamping dies. Int. J. Adv. Manuf. Technol. 2014, 70, 257–262. [Google Scholar]
- Wen, S.; Chen, Z.; Qu, S.; Tang, J.J.; Han, X.H. Investigations on the interfacial heat transfer coefficient during hot stamping of ultra-high strength steel with Al-Si coating. Int. J. Heat Mass Transf. 2022, 189, 122739. [Google Scholar] [CrossRef]
- George, R.; Bardelcik, A.; Worswick, M.J. Hot forming of Boron steels using heated and cooled tooling for tailored propertied. J. Mater. Process. Technol. 2012, 212, 2386–2399. [Google Scholar] [CrossRef]
Cr | Mo | Nb | Fe | C | Al | Ti | Mn | S | Ni |
---|---|---|---|---|---|---|---|---|---|
21.5 | 9 | 3.6 | 2 | 0.05 | 0.2 | 0.2 | 0.2 | 0.001 | Bal |
0.001 s−1 | 0.01 s−1 | 0.1 s−1 | 1 s−1 | 10 s−1 | |
---|---|---|---|---|---|
1073 K | 0.56 | -- | -- | -- | -- |
1123 K | 0.69 | 0.66 | -- | -- | -- |
1173 K | 0.71 | 0.71 | -- | -- | -- |
1223 K | 0.83 | 0.71 | 0.71 | -- | -- |
1273 K | 0.84 | 0.76 | 0.75 | -- | 0.49 |
1323 K | 0.90 | 0.81 | 0.81 | 0.75 | 0.59 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Transfer time of blank/s | 8 | Heating temperature of blank/°C | 1000 |
Press stoke/mm | 350 | Blank-holder force/KN | 120 |
Forming speed/mm·s−1 | 100 | Tool temperature/°C | 300 |
Cushion stroke/mm | 100 | Friction coefficient | 0.45 |
Waiting time before ram motion/s | 3 | Dwell time/s | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Zhou, J.; Peng, J.; Deng, H.; Gongye, F.; Zhang, J. Study on Hot Tensile Deformation Behavior and Hot Stamping Process of GH3625 Superalloy Sheet. Materials 2023, 16, 1927. https://doi.org/10.3390/ma16051927
Peng S, Zhou J, Peng J, Deng H, Gongye F, Zhang J. Study on Hot Tensile Deformation Behavior and Hot Stamping Process of GH3625 Superalloy Sheet. Materials. 2023; 16(5):1927. https://doi.org/10.3390/ma16051927
Chicago/Turabian StylePeng, Shixin, Jie Zhou, Jie Peng, Heping Deng, Fanjiao Gongye, and Jiansheng Zhang. 2023. "Study on Hot Tensile Deformation Behavior and Hot Stamping Process of GH3625 Superalloy Sheet" Materials 16, no. 5: 1927. https://doi.org/10.3390/ma16051927
APA StylePeng, S., Zhou, J., Peng, J., Deng, H., Gongye, F., & Zhang, J. (2023). Study on Hot Tensile Deformation Behavior and Hot Stamping Process of GH3625 Superalloy Sheet. Materials, 16(5), 1927. https://doi.org/10.3390/ma16051927