Hetero-Bimetallic Ferrocene-Containing Zinc(II)-Terpyridyl-Based Metallomesogen: Structural and Electrochemical Characterization
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Mesomorphism
2.2.1. POM and DSC Studies
2.2.2. PXRD Studies
2.3. Electrochemistry
3. Materials and Methods
3.1. Synthesis
3.2. Optical and Thermal Studies
3.3. Powder X-ray Diffraction (PXRD) Analysis
3.4. Electrochemical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szerb, E.I.; Crispini, A.; Aiello, I.; La Deda, M. Part XII: Inorganic Materials for Optoelectronics, 62: Liquid Crystals. In Springer Handbook of Inorganic Photochemistry; Bahnemann, D.W., Patrocinio, A.O.T., Zysman-Colman, E., Eds.; Springer: Cham, Switzerland, 2022; pp. 1811–1848. [Google Scholar]
- Cuerva, C.; Cano, M.; Lodeiro, C. Advanced Functional Luminescent Metallomesogens: The Key Role of the Metal Center. Chem. Rev. 2021, 121, 12966–13010. [Google Scholar] [CrossRef] [PubMed]
- La Deda, M.; Di Maio, G.; Candreva, A.; Heinrich, B.; Andelescu, A.-A.; Popa, E.; Voirin, E.; Badea, V.; Amati, M.; Costişor, O.; et al. Very intense polarized emission in self-assembled room temperature metallomesogens based on Zn(II) coordination complexes: An experimental and computational study. J. Mater. Chem. C 2022, 10, 115–125. [Google Scholar] [CrossRef]
- Yang, X.F.; Wu, X.G.; Zhou, D.; Yu, J.T.; Xie, G.H.; Bruce, D.W.; Wang, Y.F. Platinum-based metallomesogens bearing a Pt(4,6-dfppy)(acac) skeleton: Synthesis, photophysical properties and polarised phosphorescence application. Dalton Trans. 2018, 47, 13368–13377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiriac, L.F.; Ganea, P.C.; Manaila-Maximean, D.; Pasuk, I.; Circu, V. Synthesis and thermal, emission and dielectric properties of liquid crystalline Eu(III), Sm(III) and Tb(III) complexes based on mesogenic 4-pyridone ligands functionalized with cyanobiphenyl groups. J. Mol. Liq. 2019, 290, 111184. [Google Scholar] [CrossRef]
- Wu, X.G.; Xie, G.H.; Cabry, C.P.; Xu, X.Y.; Cowling, S.J.; Bruce, D.W.; Zhu, W.G.; Baranoff, E.; Wang, Y.F. Linearly polarized electroluminescence from ionic iridium complex-based metallomesogens: The effect of aliphatic-chain on their photophysical properties. J. Mater. Chem. C 2018, 6, 3298–3309. [Google Scholar] [CrossRef] [Green Version]
- Geng, H.; Luo, K.J.; Zou, G.; Zhao, L.; Wang, H.; Li, Q.; Ni, H.L. Have ambipolar carrier transmission property based on novel platinum(II) complexes: Synthesis, photophysical properties, liquid crystalline characteristics, polarized luminescence. Dyes Pigm. 2018, 149, 82–91. [Google Scholar] [CrossRef]
- Wang, Y.F.; Fan, J.; Shi, J.W.; Qi, H.R.; Baranoff, E.; Xie, G.H.; Li, Q.G.; Tan, H.; Liu, Y.; Zhu, W.G. Influence of integrated alkyl-chain length on the mesogenic and photophysical properties of platinum-based metallomesogens and their application for polarized white OLEDs. Dyes Pigm. 2016, 133, 238–247. [Google Scholar] [CrossRef]
- Akiyoshi, R.; Zenno, H.; Sekine, Y.; Nakaya, M.; Akita, M.; Kosumi, D.; Lindoy, L.F.; Hayami, S. A Ferroelectric Metallomesogen Exhibiting Field-Induced Slow Magnetic Relaxation. Chem. Eur. J. 2022, 28, e202103367. [Google Scholar] [CrossRef]
- Liu, S.T.; Zhu, Z.H.; Li, X.L.; Tang, J.K. New iron(II) spin-crossover metallomesogen with long aliphatic chain terminated by a C=C bond. Inorg. Chem. Front. 2022, 9, 267–274. [Google Scholar] [CrossRef]
- Fitzpatrick, A.J.; Martinho, P.N.; Gildea, B.J.; Holbrey, J.D.; Morgan, G.G. Robust Room Temperature Hysteresis in an Fe-III Spin Crossover Metallomesogen. Eur. J. Inorg. Chem. 2016, 2025–2029. [Google Scholar] [CrossRef] [Green Version]
- Knyazev, A.A.; Krupin, A.S.; Kovshik, A.P.; Galyametdinov, Y.G. Effect of Magnetic and Electric Field on the Orientation of Rare-Earth-Containing Nematics. Inorg. Chem. 2021, 60, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Rajendiran, K.; Yoganandham, S.T.; Arumugam, S.; Arumugam, D.; Thananjeyan, K. An Overview of liquid crystalline mesophase transition and photophysical properties of “f block,” “d block,” and (SCO) spin-crossover metallomesogens in the optoelectronics. J. Mol. Liq. 2021, 321, 114793. [Google Scholar] [CrossRef]
- Gruzdev, M.S.; Chervonova, U.V.; Vorobeva, V.E.; Kolker, A.M. Highly branched mesomorphic iron(III) complexes with a long alkyl fragments on periphery. J. Mol. Liq. 2020, 320, 114505. [Google Scholar] [CrossRef]
- Wang, X.J.; Valldor, M.; Spielberg, E.T.; Heinemann, F.W.; Meyer, K.; Mudring, A.V. Paramagnetic iron-containing ionic liquid crystals. J. Mol. Liq. 2020, 304, 112583. [Google Scholar] [CrossRef]
- Park, M.; Kang, D.G.; Ko, H.; Rim, M.; Tran, D.T.; Park, S.; Kang, M.; Kim, T.W.; Kim, N.; Jeong, K.U. Molecular engineering of a porphyrin-based hierarchical superstructure: Planarity control of a discotic metallomesogen for high thermal conductivity. Mater. Horiz. 2020, 7, 2635–2642. [Google Scholar] [CrossRef]
- Rossi, L.; Huck-Iriart, C.; Giovanetti, L.; Antonel, P.S.; Marceca, E.; Cukiernik, F.D. Mesogenic Coordination Polymers Based on Ru-2(II,II)-Paddle-Wheel Units Exhibit High Electrical Conductivity. Eur. J. Inorg. Chem. 2022, 2022, e202100766. [Google Scholar] [CrossRef]
- Yang, B.; Ni, H.L.; Wang, H.F.; Hu, Y.H.; Luo, K.J.; Yu, W.H. Enhanced Synchronously Emission Dissymmetry Factor and Quantum Efficiency of Circularly Polarized Phosphorescence from Point-Chiral Cyclometalated Platinum(II) Liquid Crystal. J. Phys. Chem. C 2020, 124, 23879–23887. [Google Scholar] [CrossRef]
- Cuerva, C.; Campo, J.A.; Cano, M.; Sanz, J.; Sobrados, I.; Diez-Gómez, V.; Rivera-Calzada, A.; Schmidt, R. Water-Free Proton Conduction in Discotic Pyridylpyrazolate-based Pt(II) and Pd(II) Metallomesogens. Inorg. Chem. 2016, 55, 6995–7002. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, S.R.; Feng, S.S.; Li, Q.H.; Yang, B.; Zhao, Y.; Luo, K.J.; Wen, T.B. Cyclometalated Platinum(II) Metallomesogens Based on Half-Disc-Shaped beta-Diketonate Ligands with Hexacatenar: Crystal Structures, Mesophase Properties, and Semiconductor Devices. Inorg. Chem. 2022, 61, 11702–11714. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, B.; Zeng, L.W.; Luo, K.J.; Wang, H.F.; Ni, H.L.; Yang, C.L.; Li, Q. Tetradentate platinum(II) complexes: Synthesis, photophysical properties, liquid crystalline characteristics and charge transport behaviour. Dyes Pigm. 2019, 164, 398–406. [Google Scholar] [CrossRef]
- Cuerva, C.; Campo, J.A.; Cano, M.; Schmidt, R. Lamellar columnar liquid-crystalline mesophases as a 2D platform for anhydrous proton conduction. J. Mater. Chem. C 2019, 7, 10318–10330. [Google Scholar] [CrossRef]
- Cuerva, C.; Campo, J.A.; Cano, M.; Schmidt, R. Nanostructured discotic Pd(II) metallomesogens as one-dimensional proton conductors. Dalton Trans. 2017, 46, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Andelescu, A.A.; Ilies (b. Motoc), S.; Cretu, C.; Popa, E.; Marinescu, S.; Heinrich, B.; Manea, F.; Negrea, S.; Donnio, B.; Szerb, E.I. Pentacoordinated Liquid Crystalline Zn(II) Complex Organized in Smectic Mesophase: Synthesis, Structural and Electrochemical Properties. Appl. Sci. 2022, 12, 8306. [Google Scholar] [CrossRef]
- Negrea, S.; Andelescu, A.A.; Ilies (b. Motoc), S.; Cretu, C.; Cseh, L.; Rastei, M.; Donnio, B.; Szerb, E.I.; Manea, F. Design of Nanostructured Hybrid Electrodes Based on a Liquid Crystalline Zn(II) Coordination Complex-Carbon Nanotubes Composition for the Specific Electrochemical Sensing of Uric Acid. Nanomaterials 2022, 12, 4215. [Google Scholar] [CrossRef]
- Binnemans, K.; Lodewyckx, K.; Donnio, B.; Guillon, D. Mixed Copper—Lanthanide Metallomesogens. Chem. Eur. J. 2002, 8, 1101–1105. [Google Scholar] [CrossRef]
- Binnemans, K.; Lodewyckx, K.; Donnio, B.; Guillon, D. Mixed f-d Metallomesogens with an Extended Rigid Core. Eur. J. Inorg. Chem. 2005, 1506–1513. [Google Scholar] [CrossRef]
- Kadkin, O.N.; An, J.; Han, H.; Galyametdinov, Y.G. A Novel Series of Heteropolynuclear Metallomesogens: Organopalladium Complexes with Ferrocenophane-Containing Ligands. Eur. J. Inorg. Chem. 2008, 1682–1688. [Google Scholar] [CrossRef]
- Marcos, M.; Omenat, A.; Barberá, J.; Durán, F.; Serrano, J.L. Structural study of metallomesogens derived from tris-[2-(salicylideneamino)ethyl]amine. A molecular meccano. J. Mater. Chem. 2004, 14, 3321–3327. [Google Scholar] [CrossRef]
- Paschke, R.; Liebsch, S.; Tschierske, C.; Oakley, M.A.; Sinn, E. Synthesis and Mesogenic Properties of Binuclear Copper(II) Complexes Derived from Salicylaldimine Schiff Bases. Inorg. Chem. 2003, 42, 8230–8240. [Google Scholar] [CrossRef]
- Serrette, A.G.; Lai, C.K.; Swager, T.M. Complementary Shapes in Columnar Liquid Crystals: Structural Control in Homo- and Heteronuclear Bimetallic Assemblies. Chem. Mater. 1994, 6, 2252–2268. [Google Scholar] [CrossRef]
- Chico, R.; de Domingo, E.; Dominguez, C.; Donnio, B.; Heinrich, B.; Termine, R.; Golemme, A.; Coco, S.; Espinet, P. High One-Dimensional Charge Mobility in Semiconducting Columnar Mesophases of Isocyano-Triphenylene Metal Complexes. Chem. Mater. 2017, 29, 7587–7595. [Google Scholar] [CrossRef] [Green Version]
- Szydłowska, J.; Krówczyński, A.; Pociecha, D.; Szczytko, J.; Budzowski, P.; Twardowski, A.; Górecka, E. Dinuclear Mesogens with Antiferromagnetic Properties. ChemPhysChem 2010, 11, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Vulugundam, G.; Kondaiahb, P.; Bhattacharya, S. Co-liposomes of redox-active alkyl-ferrocene modified low MW branched PEI and DOPE for efficacious gene delivery in serum. J. Mater. Chem. B 2015, 3, 2318–2330. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, M.; Du, W.; Hu, L.; Li, F.; Tian, X.; Wang, A.; Zhang, Q.; Zhang, Z.; Wu, J.; et al. A Series of Zn(II) Terpyridine-Based Nitrate Complexes as Two-Photon Fluorescent Probe for Identifying Apoptotic and Living Cells via Subcellular Immigration. Inorg. Chem. 2018, 57, 7676–7683. [Google Scholar] [CrossRef]
- Kondratenko, Y.; Fundamensky, V.; Ignatyev, I.; Zolotarev, A.; Kochina, T.; Ugolkov, V. Synthesis and crystal structure of two zinc-containing complexes of triethanolamine. Polyhedron 2017, 130, 176–183. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Paul, S. Conducting polypyrrole modified with ferrocene for applications in carbon monoxide sensors. Sens. Actuators B 2007, 125, 60–65. [Google Scholar] [CrossRef]
- Tsukamoto, T.; Aoki, R.; Sakamoto, R.; Toyoda, R.; Shimada, M.; Hattori, Y.; Asaoka, M.; Kitagawa, Y.; Nishibori, E.; Nakanoc, M.; et al. A simple zinc(II) complex that features multi-functional luminochromism induced by reversible ligand dissociation. Chem. Commun. 2017, 53, 3657–3660. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Lu, W.; Liang, B.; Pombeiro, A.J.L. Synthesis, characterization, photoluminescent and thermal properties of zinc(II) 4′-phenyl-terpyridine compounds. New J. Chem. 2013, 37, 1529–1537. [Google Scholar] [CrossRef]
- Ma, Z.; Cao, Y.; Li, Q.; Guedes da Silva, M.F.C.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Synthesis, characterization, solid-state photo-luminescence and anti-tumor activity of zinc(II) 4′-phenyl-terpyridine compounds. J. Inorg. Biochem. 2010, 104, 704–711. [Google Scholar] [CrossRef]
- Andelescu, A.-A.; Heinrich, B.; Spirache, M.A.; Voirin, E.; La Deda, M.; Di Maio, G.; Szerb, E.I.; Donnio, B.; Costisor, O. Playing with PtII and ZnII Coordination to Obtain Luminescent Metallomesogens. Chem. Eur. J. 2020, 26, 4850–4860. [Google Scholar] [CrossRef]
- Qin, L.; Liang, F.; Li, Y.; Wu, J.; Guan, S.; Wu, M.; Xie, S.; Luo, M.; Ma, D. A 2D Porous Zinc-Organic Framework Platform for Loading of 5-Fluorouracil. Inorganics 2022, 10, 202. [Google Scholar] [CrossRef]
- Godbert, N.; Crispini, A.; Ghedini, M.; Carini, M.; Chiaravalloti, F.; Ferrise, A.J. LCDiXRay: A user-friendly program for powder diffraction indexing of columnar liquid crystals. Appl. Cryst. 2014, 47, 668–679. [Google Scholar] [CrossRef] [Green Version]
- Bean, L.S.; Heng, L.Y.; Yamin, B.M.; Ahmad, M. The electrochemical behaviour of ferrocene in a photocurable poly(methyl methacrylate-co-2-hydroxylethyl methacrylate) film for a glucose biosensor. Bioelectrochem. 2005, 65, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Bao, D.; Millare, B.; Xia, W.; Steyer, B.G.; Gerasimenko, A.A.; Ferreira, A.; Contreras, A.; Vullev, V.I. Electrochemical Oxidation of Ferrocene: A Strong Dependence on the Concentration of the Supporting Electrolyte for Nonpolar Solvents. J. Phys. Chem. A 2009, 113, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-L.; Abbasi-Azad, M.; Habibi, B.; Rouhani, F.; Moghanni-Bavil-Olyaei, H.; Liu, K.-G.; Morsali, A. Electrochemical Applications of Ferrocene-Based Coordination Polymers. ChemPlusChem 2020, 85, 2397. [Google Scholar] [CrossRef]
- Eckermann, A.L.; Feld, D.J.; Shaw, J.A.; Meade, T.J. Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 2010, 254, 1769–1802. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Lin, Q.; Batchelor-McAuley, C.; Compton, R.G. Nanoimpacts Reveal the Electron-Transfer Kinetics of the Ferrocene/Ferrocenium Couple Immobilised on Graphene Nanoplatelets. ChemElectroChem 2016, 3, 1478–1483. [Google Scholar] [CrossRef]
- Hampson, A.; Latham, R.J.; Marshall, A.; Giles, R.D. Some aspects of the electrochemical behaviour of the iron electrode in alkaline solutions. Electrochim. Acta 1974, 19, 397–401. [Google Scholar]
- Weinrich, H.; Come, J.; Tempel, H.; Kungl, H.; Eichel, R.-A.; Balke, N. Understanding the Nanoscale Redox- Behavior of Iron-Anodes for Rechargeable Iron-Air Batteries. Nano Energy 2017, 41, 706–716. [Google Scholar] [CrossRef]
- Hang, B.T. Electrochemical Properties of Fe2O3 Electrode in Alkaline Solution Containing K2S Additive. VNU J. Sci. Math. Phys. 2018, 34, 45–51. [Google Scholar]
- Geana, D.; El Miligy, A.A.; Lorenz, W.J. Electrochemical behaviour of iron in alkaline sulphate solutions. J. Appl. Electrochem. 1974, 4, 337–345. [Google Scholar] [CrossRef]
T = 85 °C (Upon Cooling) | T = 25 °C (Upon Cooling) | ||||||
---|---|---|---|---|---|---|---|
dobs (Å) | hk | dcalcd (Å) * | Cell Parameter | dobs (Å) | hk | dcalcd (Å) * | Cell Parameter |
26.8 | 10 | 26.8 ** | 26.3 | 10 | 26.3 ** | ||
15.7 | 11 | 15.5 | 15.4 | 11 | 15.2 | ||
13.7 | 20 | 13.4 | a = 30.95 Å | 13.5 | 20 | 13.2 | a = 30.37 Å |
9.2 | 30 | 8.9 | 9.9 | 21 | 9.9 | ||
7.6 | 22 | 7.7 | 9.2 | 30 | 8.9 | ||
3.4 | 6.9 | 40 | 6.6 | ||||
3.4 |
Modified Electrode | Γ/mol∙cm−2 | |
---|---|---|
Zn(II) Centres | Ferrocene Centres | |
Zn_CNT | 2.20∙10−4 | - |
Fc_CNT | - | 1.80∙10−3 |
Zn/Fc_CNT | 6.66∙10−4 | 2.20∙10−4 |
Electrode Type | Anodic | Cathodic | ||
---|---|---|---|---|
Process/Peak | E/V vs. SCE | Process/Peak | E/V vs. SCE | |
Zn/Fe_CNT | ZnO dissolution /AI | +0.290 | Ferrocenium reduction/CI | +0.240 |
Ferrocene oxidation/AII | +0.600 | Oxygen reduction/CII | −0.124 | |
Zinc reduction/CIII | −1.300 | |||
Zn_CNT | Zinc stripping/AI’ | −0.310 | Outer oxygen reduction reaction/CI’ | +0.135 |
ZnO dissolution /AII’ | +0.450 | Reduction of inner O2 /CII’ | −0.560 | |
Zn reduction/CIII’ | −0.900 | |||
Fc_CNT | Fe oxidation /AI” | −0.680 | Ferrocenium reduction/CI” | +0.220 |
Ferrocene oxidation/AII” | +0.260 | Fe(II) reduction /CII” | −1.000 | |
Ferrocenium oxidation/AIII” | +0.550 |
V1/2 | IpAII” | IpCI” | IpAII”/IpCI” | EpAII” | EpCI” | ΔEp |
---|---|---|---|---|---|---|
0.100 | 26.46 | −14.86 | 1.78 | 0.240 | 0.220 | 0.020 |
0.141 | 71.46 | −48.78 | 1.47 | 0.250 | 0.210 | 0.040 |
0.173 | 117.73 | −87.49 | 1.35 | 0.260 | 0.200 | 0.060 |
0.200 | 162.74 | −129.88 | 1.25 | 0.270 | 0.190 | 0.080 |
0.224 | 209.26 | −170.98 | 1.22 | 0.280 | 0.180 | 0.100 |
0.316 | 405.98 | −345.14 | 1.18 | 0.310 | 0.160 | 0.150 |
0.447 | 742.23 | −635.41 | 1.17 | 0.360 | 0.120 | 0.240 |
V1/2 | IpAII | IpCI | IpAII/IpCI | EpAII | EpCI | ΔEp |
---|---|---|---|---|---|---|
0.100 | 6.83 | −10.03 | 0.680 | 0.610 | 0.300 | 0.310 |
0.141 | 10.06 | −19.17 | 0.520 | 0.640 | 0.300 | 0.340 |
0.173 | 12.05 | −27.64 | 0.440 | 0.650 | 0.300 | 0.350 |
0.200 | 13.74 | −36.12 | 0.380 | 0.660 | 0.300 | 0.360 |
0.224 | 15.89 | −44.60 | 0.360 | 0.670 | 0.300 | 0.370 |
0.316 | 26.82 | −72.74 | 0.370 | 0.680 | 0.280 | 0.400 |
0.447 | 46.97 | −99.08 | 0.470 | 0.680 | 0.230 | 0.450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, E.; Andelescu, A.A.; Ilies, S.; Visan, A.; Cretu, C.; Scarpelli, F.; Crispini, A.; Manea, F.; Szerb, E.I. Hetero-Bimetallic Ferrocene-Containing Zinc(II)-Terpyridyl-Based Metallomesogen: Structural and Electrochemical Characterization. Materials 2023, 16, 1946. https://doi.org/10.3390/ma16051946
Popa E, Andelescu AA, Ilies S, Visan A, Cretu C, Scarpelli F, Crispini A, Manea F, Szerb EI. Hetero-Bimetallic Ferrocene-Containing Zinc(II)-Terpyridyl-Based Metallomesogen: Structural and Electrochemical Characterization. Materials. 2023; 16(5):1946. https://doi.org/10.3390/ma16051946
Chicago/Turabian StylePopa, Evelyn, Adelina A. Andelescu, Sorina Ilies (b. Motoc), Alexandru Visan, Carmen Cretu, Francesca Scarpelli, Alessandra Crispini, Florica Manea, and Elisabeta I. Szerb. 2023. "Hetero-Bimetallic Ferrocene-Containing Zinc(II)-Terpyridyl-Based Metallomesogen: Structural and Electrochemical Characterization" Materials 16, no. 5: 1946. https://doi.org/10.3390/ma16051946
APA StylePopa, E., Andelescu, A. A., Ilies, S., Visan, A., Cretu, C., Scarpelli, F., Crispini, A., Manea, F., & Szerb, E. I. (2023). Hetero-Bimetallic Ferrocene-Containing Zinc(II)-Terpyridyl-Based Metallomesogen: Structural and Electrochemical Characterization. Materials, 16(5), 1946. https://doi.org/10.3390/ma16051946