Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Sample Preparation
2.3. Test Methodology
3. Results and Discussion
3.1. Permeability Characteristics of Solidified Aeolian Sand
3.2. Effect of Initial Dry Density on the UCS of Solidified Aeolian Sand
3.3. Effect of Fiber Content on the UCS of Solidified Aeolian Sand
3.4. Effect of Fiber Length on the UCS of Solidified Aeolian Sand
3.5. Relationship between UCS and CaCO3 Generation
3.6. Consolidation Mechanism of MICP-BFR Treated Aeolian Sand
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whiffin, V.S. Microbial CaCO3 Precipitation for the Production of Biocement. Ph.D. Thesis, Murdoch University, Perth, Australia, 2004. [Google Scholar]
- DeJonga, J.T.; Mortensenb, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Gao, Y.; Yao, D.; Han, H.W.; Li, C. Micro-experiment on MICP-treated aeolian sandy soil under ultraviolet erosion environment. Chin. J. Geotech. Eng. 2020, 42 (Suppl. S1), 254–258. [Google Scholar]
- Li, C.; Wang, S.; Wang, Y.X.; Gao, Y.; Bai, S. Field experimental study on stability of bio-mineralization crust in the desert. Rock Soil Mech. 2019, 40, 1291–1298. [Google Scholar]
- Nikseresht, F.; Landi, A.; Sayyad, G.; Ghezelbash, G.; Schulin, R. Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. J. Environ. Manag. 2020, 268, 110639. [Google Scholar] [CrossRef]
- Zhang, M.L.; Zhao, L.; Li, G.K.; Zhu, C.; Dong, S.J.; Li, Z.B.; Tang, C.S.; Ji, J.F.; Chen, J. Microbially induced magnesium carbonate precipitation and its potential application in combating desertification. Geomicrobiol. J. 2021, 38, 549–560. [Google Scholar] [CrossRef]
- Raveh-Amit, H.; Tsesarsky, M. Biostimulation in desert soils for microbial-induced calcite precipitation. Appl. Sci. 2020, 10, 2905. [Google Scholar] [CrossRef] [Green Version]
- Tian, K.L.; Wang, X.D.; Zhang, S.C.; Zhang, H.L.; Zhang, F.; Yang, A.Q. Effect of reactant injection rate on solidifying aeolian sand via microbially induced calcite precipitation. J. Mater. Civ. Eng. 2020, 32, 04020291. [Google Scholar] [CrossRef]
- Tian, K.L.; Wu, Y.Y.; Zhang, H.L.; Li, D.; Nie, K.Y.; Zhang, S.C. Increasing wind erosion resistance of aeolian sandy soil by microbial induced calcium carbonate precipitation. Land Degrad. Dev. 2018, 29, 4271–4281. [Google Scholar] [CrossRef]
- Li, D.; Tian, K.L.; Zhang, H.L.; Wu, Y.Y.; Nie, K.Y.; Zhang, S.C. Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation. Constr. Build. Mater. 2018, 172, 251–262. [Google Scholar]
- Meng, H.; Gao, Y.F.; He, J.; Qi, Y.S.; Hang, L. Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests. Geoderma 2021, 383, 114723. [Google Scholar] [CrossRef]
- Devrani, R.; Dubey, A.A.; Ravi, K.; Sahoo, L. Applications of bio-cementation and bio-polymerization for aeolian erosion control. J. Arid. Environ. 2021, 187, 104433. [Google Scholar] [CrossRef]
- Dubey, A.A.; Devrani, R.; Ravi, K.; Dhami, N.K.; Mukherjee, A.; Sahoo, L. Experimental investigation to mitigate aeolian erosion via biocementation employed with a novel ureolytic soil isolate. Aeolian Res. 2021, 52, 100727. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Basu, P.C.; Reddy, M.S. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J. Ind. Microbiol. Biotechnol. 2009, 36, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Tang, Y.F.; Ma, G.L.; McCartney, J.S.; Chu, J. Thermal Conductivity of Biocemented Graded Sands. J. Geotech. Geoenviron. Eng. 2021, 147, 04021106. [Google Scholar] [CrossRef]
- Li, Y.J.; Guo, Z.; Wang, L.Z.; Li, Y.L.; Liu, Z.Y. Shear resistance of MICP cementing material at the interface between calcareous sand and steel. Mater. Lett. 2020, 274, 128009. [Google Scholar] [CrossRef]
- Martinez, A.; DeJong, J.; Akin, I.; Aleali Ali Arson, C.; Atkinson, J.; Bandini, P.; Baser, T.; Borela, R.; Boulanger Ross Burrall, M.; Chen, Y.Y.; et al. Bio-inspired geotechnical engineering principles, current work, opportunities and challenges. Geotechnique 2022, 8, 687–705. [Google Scholar] [CrossRef]
- Wang, D.L.; Tang, C.S.; Pan, X.H.; Liu, B.; Li, H.; Lv, C.; Cheng, Y.J. Tensile strength of fiber-reinforced MICP-treated calcareous sand. Geol. J. China Univ. 2021, 27, 670–678. [Google Scholar]
- Yin, L.Y.; Tang, C.S.; Zhang, L. Experimental study on mechanical behavior of MICP-fiber reinforce treated calcareous sand. Geol. J. China Univ. 2021, 27, 679–686. [Google Scholar]
- Li, H.; Tang, C.S.; Yin, L.Y.; Liu, B.; Lv, C.; Wang, D.L.; Pan, X.H.; Wang, H.L.; Shi, B. Experimental study on surface erosion resistances and mechanical behavior of MICP-FR-treated calcareous sand. Chin. J. Geotech. Eng. 2021, 43, 1941–1949. [Google Scholar]
- Xie, Y.H.; Tang, C.S.; Yin, L.Y.; Lv, C.; Jiang, N.J.; Shi, B. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement. Chin. J. Geotech. Eng. 2019, 41, 675–682. [Google Scholar]
- Zhao, Y.; Fan, C.B.; Ge, F.; Cheng, X.H.; Liu, P.H. Enhancing strength of MICP-treated sand with scrap of activated carbon-fiber felt. J. Mater. Civ. Eng. 2020, 32, 04020061. [Google Scholar] [CrossRef]
- Qiu, R.K.; Tong, H.W.; Gu, M.X.; Yuan, J. Strength and micromechanism analysis of microbial solidified sand with carbon fiber. Adv. Civ. Eng. 2020, 2020, 8876617. [Google Scholar] [CrossRef]
- Li, M.D.; Li, L.; Ogbonnaya, U.; Wen, K.J.; Tian, A.; Amini, F. Influence of fiber addition on mechanical properties of MICP-treated sand. J. Mater. Civ. Eng. 2016, 28, 04015166. [Google Scholar] [CrossRef]
- Hao, Y.F.; Cheng, L.; Hao, H.; Shahin, M.A. Enhancing fiber/matrix bonding in polypropylene fiber reinforced cementitious composites by microbial induced calcite precipitation pre-treatment. Cem. Concr. Compos. 2018, 88, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.W.; Lin, S.Q.; Meng, Q.S.; Liao, X.H.; Xu, J.P. Influence of different fiber types on properties of biocemented calcareous sand. Arabian J. Geosci. 2020, 13, 317. [Google Scholar] [CrossRef]
- Imran, M.A.; Gowthaman, S.; Nakashima, K.; Kawasaki, S. The influence of the addition of plant-based natural fibers (jute) on biocemented sand using MICP method. Materials 2020, 13, 4198. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.W.; Yang, Y.; Chen, Z.; Liu, H.L.; Xiao, Y.; Shen, C.N. Influence of fiber content and length on engineering properties of MICP-treated coral sand. Geomicrobiol. J. 2020, 37, 582–594. [Google Scholar] [CrossRef]
- Wen, K.J.; Bu, C.M.; Liu, S.H.; Li, Y.; Li, L. Experimental investigation of flexure resistance performance of bio-beams reinforced with discrete randomly distributed fiber and bamboo. Constr. Build. Mater. 2018, 176, 241–249. [Google Scholar] [CrossRef]
- Spencer, C.A.; van Paassen, L.; Sass, H. Effect of jute fibres on the process of MICP and properties of biocemented sand. Materials 2020, 13, 5429. [Google Scholar] [CrossRef]
- Choi, S.G.; Wang, K.J.; Chu, J. Properties of biocemented, fiber reinforced sand. Constr. Build. Mater. 2016, 120, 623–629. [Google Scholar] [CrossRef]
- Choi, S.G.; Hoang, T.; Alleman, E.J.; Chu, J. Splitting tensile strength of fiber-reinforced and biocemented sand. J. Mater. Civ. Eng. 2019, 31, 06019007. [Google Scholar] [CrossRef]
- Yao, D.F.; Wu, J.; Wang, G.W.; Wang, P.B.; Zheng, J.J.; Yan, J.Y.; Xu, L.; Yan, Y.J. Effect of wool fiber addition on the reinforcement of loose sands by microbial induced carbonate precipitation (MICP): Mechanical property and underlying mechanism. Acta Geotech. 2021, 16, 1401–1416. [Google Scholar] [CrossRef]
- Kou, H.G.; Ma, Q.; Han, S.L. Experimental study on the mechanical behaviors of loess reinforced with randomly distributed basalt fiber. Appl. Sci. 2022, 12, 9744. [Google Scholar] [CrossRef]
- Zheng, J.J.; Song, Y.; Wu, C.C.; Cui, M.J. Experimental study on mechanical properties of basalt fiber reinforced MICP-treated sand. J. Huazhong Univ. Sci. Tech. (Nat. Sci. Ed.) 2019, 47, 73–78. [Google Scholar]
- Wang, Y.Z. Microbial-Induced Calcium Carbonate Precipitation: From Micro to Macro Scale. Doctor Dissertation, University of Cambridge, UK, 2018. [Google Scholar]
- Zheng, J.J.; Song, Y.; Lai, H.J.; Cui, M.J.; Wu, C.C. Experimental study on the shear behavior of fiber-reinforced bio-cemented sand. J. Civ. Environ. Eng. 2019, 41, 15–21. [Google Scholar]
- Yang, Y.R.; Kulandaivel, A.; Mehrez, S.; Mahariq, I.; Elbadawy, I.; Mohanavel, V.; Jalil, A.T.; Saleh, M. Mahmood. Developing a high-performance electromagnetic microwave absorber using BaTiO3/CoS2/CNTs triphase hybrid. Ceram. Int. 2023, 49, 2557–2569. [Google Scholar] [CrossRef]
- Yang, Y.R.; Li, G.; Luo, T.; Al-Bahrani, M.; Al-Ammar, E.A.; Sillanpaa, M.; Ali, S.; Leng, X.J. The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks. Energy 2023, 268, 126548. [Google Scholar] [CrossRef]
- Yang, Y.R.; Logesh, K.; Mehrez, S.; Huynen, I.; Elbadawy, I.; Mohanavel, V. Alamri, Sagr. Rational construction of wideband electromagnetic wave absorber using hybrid FeWO4-based nanocomposite structures and tested by the free-space method. Ceram. Int. 2023, 49, 2130–2139. [Google Scholar] [CrossRef]
ρdmax (g/cm3) | ρdmin (g/cm3) | d10 (mm) | d30 (mm) | d60 (mm) | Cu | Cc |
---|---|---|---|---|---|---|
1.85 | 1.47 | 0.073 | 0.109 | 0.187 | 2.58 | 0.88 |
Diameter (μm) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Density (g/cm3) | Elongation at Fracture (%) |
---|---|---|---|---|
10 | 3500–4500 | 100 | 2.65 | 2.2 |
ρd (g/cm3) | Cementation Number | Fiber Length (mm) | Fiber Content (%) |
---|---|---|---|
1.5 | 18 | 6 | 0.2, 0.4, 0.6, 0.8, 1.0 |
18 | 9 | 0.2, 0.4, 0.6, 0.8, 1.0 | |
18 | 12 | 0.2, 0.4, 0.6, 0.8, 1.0 | |
18 | 15 | 0.2, 0.4, 0.6, 0.8, 1.0 | |
1.6 | 18 | 6 | 0.2, 0.4, 0.6, 0.8, 1.0 |
18 | 9 | 0.2, 0.4, 0.6, 0.8, 1.0 | |
18 | 12 | 0.2, 0.4, 0.6, 0.8, 1.0 | |
18 | 15 | 0.2, 0.4, 0.6, 0.8, 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Li, X.; Li, G.; Zhang, J. Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR). Materials 2023, 16, 1949. https://doi.org/10.3390/ma16051949
Liu J, Li X, Li G, Zhang J. Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR). Materials. 2023; 16(5):1949. https://doi.org/10.3390/ma16051949
Chicago/Turabian StyleLiu, Jia, Xi’an Li, Gang Li, and Jinli Zhang. 2023. "Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR)" Materials 16, no. 5: 1949. https://doi.org/10.3390/ma16051949
APA StyleLiu, J., Li, X., Li, G., & Zhang, J. (2023). Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR). Materials, 16(5), 1949. https://doi.org/10.3390/ma16051949