Development of Cemented Paste Backfill with Superfine Tailings: Fluidity, Mechanical Properties, and Microstructure Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Physical and Chemical Properties of Tailings
2.1.2. Classified Characteristics of Tailings
2.1.3. Settlement Characteristics of the Overflow of Tailings Slurry
2.2. Methods
2.2.1. Strength Testing
2.2.2. Fluidity Testing
2.2.3. Microstructure Testing
3. Results and Analysis
3.1. Fluidity
3.1.1. Slump and Slump Flow
3.1.2. Rheological Properties
3.2. UCS
3.2.1. Effect of the Mix Proportion on UCS
3.2.2. Effect of Curing Time on UCS
3.2.3. Effect of Curing Temperature on UCS
3.2.4. Correlation Analysis of Different Factors with UCS
3.3. Microstructure
3.3.1. Structure of Hydration Products
3.3.2. Microscopic Pore Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Zhang, H.; Zhu, W. Fracture evolution around pre-existing cylindrical cavities in brittle rocks under uniaxial compression. T. Nonferr. Metal. Soc. 2014, 24, 806–815. [Google Scholar] [CrossRef]
- Sun, W.; Wu, A.; Hou, K.; Yang, Y.; Liu, L.; Wen, Y. Real-time observation of meso-fracture process in backfill body during mine subsidence using X-ray CT under uniaxial compressive conditions. Constr. Build. Mater. 2016, 113, 153–162. [Google Scholar] [CrossRef]
- Yin, S.; Hou, Y.; Chen, X.; Zhang, M. Mechanical, flowing and microstructural properties of cemented sulfur tailings backfill: Effects of fiber lengths and dosage. Constr. Build. Mater. 2021, 309, 125058. [Google Scholar] [CrossRef]
- Hu, Y.; Li, K.; Zhang, B.; Han, B. Investigation of the strength of concrete-like material with waste rock and aeolian sand as aggregate by machine learning. J. Comput. Des. Eng. 2022, 9, 2134–2150. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, X.; Chen, Q.; Bin, F.; Wang, Y.; Wei, W. Strength Investigation of the Silt-Based Cemented Paste Backfill Using Lab Experiments and Deep Neural Network. Adv. Mater. Sci. Eng. 2020, 2020, 695539. [Google Scholar] [CrossRef]
- Xue, Z.; Gan, D.; Zhang, Y.; Liu, Z. Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions. Constr. Build. Mater. 2020, 253, 119212. [Google Scholar] [CrossRef]
- Qi, C.; Chen, Q.; Fourie, A.; Zhang, Q. An intelligent modelling framework for mechanical properties of cemented paste backfill. Miner. Eng. 2018, 123, 16–27. [Google Scholar] [CrossRef]
- Zhang, B.; Li, K.; Hu, Y.; Ji, K.; Han, B. Prediction of Backfill Strength Based on Support Vector Regression Improved by Grey Wolf Optimization. J. Shanghai Jiaotong Univ. 2022. [Google Scholar] [CrossRef]
- Ait-Khouia, Y.; Benzaazoua, M.; Elghali, A.; Chopard, A.; Demers, I. Feasibility of reprocessing gold tailings: Integrated management approach for the control of contaminated neutral mine drainage. Miner. Eng. 2022, 187, 107821. [Google Scholar] [CrossRef]
- Wang, H.; Dowd, P.A.; Xu, C. A reaction rate model for pyrite oxidation considering the influence of water content and temperature. Miner. Eng. 2019, 134, 345–355. [Google Scholar] [CrossRef]
- Das, S.K.; Kundu, T.; Dash, N.; Angadi, S.I. Separation behavior of Falcon concentrator for the recovery of ultrafine scheelite particles from the gold mine tailings. Sep. Purif. Technol. 2023, 309, 123065. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Vakilchap, F.; Baniasadi, M.; Mousavi, S.M.; Khodadadi Darban, A.; Farnaud, S. Green recovery of cerium and strontium from gold mine tailings using an adapted acidophilic bacterium in one-step bioleaching approach. J. Taiwan Inst. Chem. E. 2022, 138, 104482. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.; Han, S.; Han, Y.; Park, J. Silanol-rich ordered mesoporous silica modified thiol group for enhanced recovery performance of Au(III) in acidic leachate solution. Chem. Eng. J. 2018, 351, 1027–1037. [Google Scholar] [CrossRef]
- Khayrutdinov, A.; Paleev, I.; Artemov, S. Replacement of traditional components of the backfill mixture with man-made waste. IOP Conf. Ser. Earth Environ. Sci. 2021, 942, 12005. [Google Scholar] [CrossRef]
- Khairutdinov, A.; Tyulyaeva, Y.; Kongar-Syuryun, C.; Rybak, A. Extraction of minerals on celestial bodies as a new scientific direction. IOP Conf. Ser. Earth Environ. Sci. 2021, 684, 12004. [Google Scholar] [CrossRef]
- Kongar-Syuryun, C.B.; Faradzhov, V.V.; Tyulyaeva, Y.S.; Khayrutdinov, A.M. Effect of activating treatment of halite flotation waste in backfill mixture preparation. Min. Inf. Anal. Bull. 2021, 1, 43–57. [Google Scholar] [CrossRef]
- Khayrutdinov, A.M.; Kongar-Syuryun, C.; Kowalik, T.; Faradzhov, V. Improvement of the backfilling characteristics by activation of halite waste for non-waste geotechnology. IOP Conf. Ser. Mater. Sci. Eng. 2020, 867, 12018. [Google Scholar] [CrossRef]
- Kongar-Syuryun, C.; Aleksakhin, A.; Khayrutdinov, A.; Tyulyaeva, Y. Research of rheological characteristics of the mixture as a way to create a new backfill material with specified characteristics. Mater. Today Proc. 2021, 38, 2052–2054. [Google Scholar] [CrossRef]
- Guo, Z.; Qiu, J.; Jiang, H.; Zhang, S.; Ding, H. Improving the performance of superfine-tailings cemented paste backfill with a new blended binder. Powder Technol. 2021, 394, 149–160. [Google Scholar] [CrossRef]
- Guo, Z.; Sun, X.; Zhang, X.; Qiu, J.; Jiang, H.; Zhao, Y.; Wu, P.; Zhang, Q. Effect of superplasticizer on rheology and thixotropy of superfine-tailings cemented paste backfill: Experiment and modelling. Constr. Build. Mater. 2022, 316, 125693. [Google Scholar] [CrossRef]
- Liu, B.; Gao, Y.; Jin, A.; Wang, X. Influence of water loss on mechanical properties of superfine tailing–blast-furnace slag backfill. Constr. Build. Mater. 2020, 246, 118482. [Google Scholar] [CrossRef]
- Lai, Y.; Zhao, K.; Yan, Y.; Yang, J.; Wu, J.; Ao, W.; Guo, L. Damage study of fiber-doped superfine tailings cemented backfill based on acoustic emission cumulative ringing count. J. Mater. Sci. 2022, 57, 11612–11629. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Y.; Qiu, J.; Zhang, S.; Sun, X.; Gu, X. Preparation and characterization of a new alkali-activated binder for superfine-tailings mine backfill. Environ. Sci. Pollut. R. 2022, 29, 73115–73130. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, J.; Jiang, H.; Hu, S.; Li, H.; Li, S. Use of Cemented Super-Fine Unclassified Tailings Backfill for Control of Subsidence. Minerals 2017, 7, 216. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Y.; Cui, L.; Bi, C.; Wu, A. Insight into the isothermal multiphysics processes in cemented paste backfill: Effect of curing time and cement-to-tailings ratio. Constr. Build. Mater. 2022, 325, 126739. [Google Scholar] [CrossRef]
- Zhou, Y.; Fall, M. Investigation on rheological properties of cemented pastefill with chloride-bearing antifreeze additives in sub-zero environments. Cold Reg. Sci. Technol. 2022, 196, 103506. [Google Scholar] [CrossRef]
- Xiu, Z.; Wang, S.; Ji, Y.; Wang, F.; Ren, F. Experimental study on the triaxial mechanical behaviors of the Cemented Paste Backfill: Effect of curing time, drainage conditions and curing temperature. J. Environ. Manag. 2022, 301, 113828. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Xiang, J.; Zhang, W.; Zhao, Y.; Sun, X.; Gu, X. Effect of microbial-cemented on mechanical properties of iron tailings backfill and its mechanism analysis. Constr. Build. Mater. 2022, 318, 126001. [Google Scholar] [CrossRef]
- Todaro, C.; Saltarin, S.; Cardu, M. Bentonite in two-component grout applications. Case Stud. Constr. Mater. 2022, 16, e901. [Google Scholar] [CrossRef]
- Yang, L.; Hou, C.; Zhu, W.; Liu, X.; Yan, B.; Li, L. Monitoring the failure process of cemented paste backfill at different curing times by using a digital image correlation technique. Constr. Build. Mater. 2022, 346, 128487. [Google Scholar] [CrossRef]
- Wu, D.; Sun, W.; Liu, S.; Qu, C. Effect of microwave heating on thermo-mechanical behavior of cemented tailings backfill. Constr. Build. Mater. 2021, 266, 121180. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Ding, H.; Qiu, J.; Hou, C. Effect of sodium chloride concentration and pre-curing time on the properties of cemented paste backfill in a sub-zero environment. J. Clean. Prod. 2021, 283, 125310. [Google Scholar] [CrossRef]
- Koohestani, B.; Mokhtari, P.; Yilmaz, E.; Mahdipour, F.; Darban, A.K. Geopolymerization mechanism of binder-free mine tailings by sodium silicate. Constr. Build. Mater. 2021, 268, 121217. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, J.; Guo, Z.; Zhang, S.; Wu, P.; Sun, X. Activation the hydration properties of illite-containing tailings to prepare a binder for cemented paste backfill. Constr. Build. Mater. 2022, 318, 125989. [Google Scholar] [CrossRef]
- Guo, L.; Chen, Q.; Wu, Y.; Zhang, Q.; Qi, C. Numerical simulation of adjacent stope interaction and parametric analysis of the creep behavior of rock mass. J. Mater. Res. Technol. 2022, 19, 2063–2076. [Google Scholar] [CrossRef]
- Tang, R.; Zhao, B.; Li, C.; Xin, J.; Xu, B.; Tian, C.; Ning, J.; Li, L.; Shao, X. Experimental study on the effect of fly ash with ammonium salt content on the properties of cemented paste backfill. Constr. Build. Mater. 2023, 369, 130513. [Google Scholar] [CrossRef]
- Zheng, J.; Tang, Y.; Feng, H. Utilization of low-alkalinity binders in cemented paste backfill from sulphide-rich mine tailings. Constr. Build. Mater. 2021, 290, 123221. [Google Scholar] [CrossRef]
- Martínez-Ortiz-De-Montellano, C.; Torres-Acosta, J.F.D.J.; Sandoval-Castro, C.A.; Fourquaux, I.; Hoste, H. Scanning electron microscopy of different vulval structures in a Mexican Haemonchus contortus isolate. Vet. Parasitol. Reg. Stud. Rep. 2021, 26, 100640. [Google Scholar] [CrossRef]
- Lin, X.; Pang, H.; Wei, D.; Lu, M.; Liao, B. Effect of the cross-linker structure of cross-linked polycarboxylate superplasticizers on the behavior of cementitious mixtures. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125437. [Google Scholar] [CrossRef]
- Liu, L.; Fang, Z.; Wang, M.; Qi, C.; Zhao, Y.; Huan, C. Experimental and numerical study on rheological properties of ice-containing cement paste backfill slurry. Powder Technol. 2020, 370, 206–214. [Google Scholar] [CrossRef]
- Zhu, L.; Jin, Z.; Zhao, Y.; Duan, Y. Rheological properties of cemented coal gangue backfill based on response surface methodology. Constr. Build. Mater. 2021, 306, 124836. [Google Scholar] [CrossRef]
- Zha, H.; Fu, H.; Chen, C.; Yang, J.; Wang, H.; Zhu, X.; Yuan, D.; Jia, C. The use of eco-friendly lignin as a cementitious material to improve the engineering properties of disintegrated carbonaceous mudstone. Constr. Build. Mater. 2022, 359, 129456. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, M.; Chen, C.; Yuan, Z.; Geng, X.; Yang, S. Solidification of uranium tailings using alkali-activated slag mixed with natural zeolite. Nucl. Eng. Technol. 2022, 55, 523–529. [Google Scholar] [CrossRef]
- Hu, Y.; Li, K.; Zhang, B.; Han, B. Strength investigation of the cemented paste backfill in alpine regions using lab experiments and machine learning. Constr. Build. Mater. 2022, 323, 126583. [Google Scholar] [CrossRef]
- Zhang, B.; Li, K.; Zhang, S.; Hu, Y.; Han, B. A Modeling Method for Predicting the Strength of Cemented Paste Backfill Based on a Combination of Aggregate Gradation Optimization and LSTM. J. Renew. Mater. 2022, 10, 3539–3558. [Google Scholar] [CrossRef]
- Zhang, B.; Li, K.; Zhang, S.; Hu, Y.; Han, B. Strength prediction and application of cemented paste backfill based on machine learning and strength correction. Heliyon 2022, 8, e10338. [Google Scholar] [CrossRef]
- Zeng, H.; Li, W.; Jin, M.; Zhang, J.; Ma, Y.; Lu, C.; Liu, J. Deterioration of performances and structures of cement pastes under the action of thermal cycling fatigue. Int. J. Fatigue 2022, 165, 107181. [Google Scholar] [CrossRef]
- Imran Waris, M.; Plevris, V.; Mir, J.; Chairman, N.; Ahmad, A. An alternative approach for measuring the mechanical properties of hybrid concrete through image processing and machine learning. Constr. Build. Mater. 2022, 328, 126899. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, J.; Guo, B.; Wang, J.; Fu, C.; Zhang, Y. Effect of mixed basalt fiber and calcium sulfate whisker on chloride permeability of concrete. J. Build. Eng. 2023, 64, 105633. [Google Scholar] [CrossRef]
- Steindl, F.R.; Mittermayr, F.; Sakoparnig, M.; Juhart, J.; Briendl, L.; Lindlar, B.; Ukrainczyk, N.; Dietzel, M.; Kusterle, W.; Galan, I. On the porosity of low-clinker shotcrete and accelerated pastes. Constr. Build. Mater. 2023, 368, 130461. [Google Scholar] [CrossRef]
- Dang, J.; Zhao, S.; Chen, G.; Cao, X.; Yang, J. Effect of polyethylene powder and heating treatment on the microstructure and hardened properties of foam concrete. J. Build. Eng. 2022, 50, 104143. [Google Scholar] [CrossRef]
Element | SiO2 | CaO | MgO | Fe2O3 | Al2O3 | Na2O | K2O | SO3 |
---|---|---|---|---|---|---|---|---|
Content (%) | 69.48 | 5.37 | 3.14 | 2.35 | 13.62 | 0.17 | 0.55 | 0.61 |
Curing Time (°C) | Cement-Sand Ratio | Mass Concentration (%) | Curing Time (d) |
---|---|---|---|
Effect of mix proportion | |||
20 | 1:4, 1:6, 1:8, 1:10 | 60, 65, 70, 73, 76, 79 | 3, 7, 14, 28 |
Effect of curing time | |||
20 | 1:8 | 60, 65, 70, 73, 76, 79 | 3, 7, 14, 28 |
Effect of curing temperature | |||
10, 15, 20 | 1:8 | 60, 65, 70, 73, 76, 79 | 3, 7, 14, 28 |
Research Subjects | Cement-Sand Ratio | Mass Concentration (%) | Indicators |
---|---|---|---|
Tailings slurry | 1:0 | 60, 62.5, 65, 67.5, 70, 73, 76, 79 | Slump, Slump flow, and Rheological parameters |
Filling slurry | 1:8 | 60, 62.5, 65, 67.5, 70, 73, 76, 79 |
Mass Concentration | Slurry Type | Fitting Curve | R2 | Slurry Type | Fitting Curve | R2 |
---|---|---|---|---|---|---|
60.0% | Tailings slurry | τ = 14.57 + 0.04γ | 0.97 | Fillings lurry | τ = 21.50 + 0.05γ | 0.98 |
62.5% | τ = 22.06 + 0.06γ | 0.96 | τ = 63.58 + 0.11γ | 0.99 | ||
65.0% | τ = 60.63 + 0.13γ | 0.99 | τ = 83.39 + 0.23γ | 0.98 | ||
67.5% | τ = 100.33 + 0.27γ | 0.97 | τ = 138.21 + 0.35γ | 0.97 | ||
70.0% | τ = 163.94 + 0.58γ | 0.95 | τ = 200.52 + 0.66γ | 0.95 | ||
73.0% | τ = 344.25 + 1.61γ | 0.92 | τ = 553.19 + 1.70γ | 0.97 | ||
76.0% | τ = 512.74 + 3.18γ | 0.94 | τ = 732.84 + 3.62γ | 0.94 | ||
79.0% | τ = 781.38 + 4.53γ | 0.91 | τ = 915.07 + 5.10γ | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Li, K.; Zhang, B.; Han, B. Development of Cemented Paste Backfill with Superfine Tailings: Fluidity, Mechanical Properties, and Microstructure Characteristics. Materials 2023, 16, 1951. https://doi.org/10.3390/ma16051951
Hu Y, Li K, Zhang B, Han B. Development of Cemented Paste Backfill with Superfine Tailings: Fluidity, Mechanical Properties, and Microstructure Characteristics. Materials. 2023; 16(5):1951. https://doi.org/10.3390/ma16051951
Chicago/Turabian StyleHu, Yafei, Keqing Li, Bo Zhang, and Bin Han. 2023. "Development of Cemented Paste Backfill with Superfine Tailings: Fluidity, Mechanical Properties, and Microstructure Characteristics" Materials 16, no. 5: 1951. https://doi.org/10.3390/ma16051951
APA StyleHu, Y., Li, K., Zhang, B., & Han, B. (2023). Development of Cemented Paste Backfill with Superfine Tailings: Fluidity, Mechanical Properties, and Microstructure Characteristics. Materials, 16(5), 1951. https://doi.org/10.3390/ma16051951