Inverse Identification and Design of Thermal Parameters of Woven Composites through a Particle Swarm Optimization Method
Abstract
:1. Introduction
2. Optimization Scheme Based on Multi-Scale Framework for the Plain-Woven Composites
2.1. Plain-Woven Composites Multi-Scale Framework
2.2. Inverse Optimization Method for Woven Composites
3. Inverse Method Based on PSO
4. Inverse and Optimization of the Plain-Woven Composites
4.1. Inverse Identification on the Thermal Conduction Coefficients of Woven Composite Original Fiber
4.2. Optimization Example of Plain-Woven Composites
5. Conclusions
- (1)
- The inverse method can greatly reduce the design cost of woven composites, and the performance advantage of the constituent materials can be fully exploited by top to bottom method.
- (2)
- The PSO-based inverse method can calculate the homogenized thermal properties of woven composites at different scales and the thermal conduction coefficients at different scales can be backed out sequentially. In order to verify the feasibility of the proposed method, the thermal conduction coefficients of Carbonized Silica/Phenolic woven composite fiber were inversed, and fiber’s thermal conduction coefficients were compared with that of the original fiber. The comparison results showed that the inverse values were in good agreement with the testing value.
- (3)
- LEHT has been formed as a packaged program. When combining LEHT with PSO algorithm, researchers just require minimal effort in constructing input data file to execute the computer program, which can be efficiently used by researchers with little thermotic exposure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Model | Equation |
---|---|
Parallel model | |
Series model | |
Clayton model | |
Pilling model | |
Russell model | |
Maxwell model |
References
- Delouei, A.A.; Emamian, A.; Karimnejad, S.; Sajjadi, H.; Jing, D. Two-dimensional analytical solution for temperature distribution in FG hollow spheres: General thermal boundary conditions. Int. Commun. Heat Mass Transf. 2020, 113, 104531. [Google Scholar] [CrossRef]
- Amiri Delouei, A.; Emamian, A.; Karimnejad, S.; Sajjadi, H.; Jing, D. Two-dimensional temperature distribution in FGM sectors with the power-law variation in radial and circumferential directions. J. Therm. Anal. Calorim. 2021, 144, 611–621. [Google Scholar] [CrossRef]
- Visser, S.J.; King, R.J.; Thornton, J.M.; Brock, J.M.; Mansour, N.N. Micro-Scale Artificial Weave Generation Capabilities for Thermal Protection System Material Modeling, 11th ed.; Ablation Workshop: Lexington, KY, USA, 2019. [Google Scholar]
- Wang, G.; Pindera, M.-J. Locally-exact homogenization theory for transversely isotropic unidirectional composites. Mech. Res. Commun. 2016, 78, 2–14. [Google Scholar] [CrossRef]
- Drago, A.S.; Pindera, M.-J. A Locally Exact Homogenization Theory for Periodic Microstructures with Isotropic Phases. J. Appl. Mech. 2008, 75, 051010. [Google Scholar] [CrossRef]
- Wang, G. An efficient analytical homogenization technique for mechanical-hygrothermal responses of unidirectional composites with applications to optimization and multiscale analyses. Chin. J. Aeronaut. 2019, 32, 382–395. [Google Scholar] [CrossRef]
- Wang, G.; Gao, M.; Yang, B.; Chen, Q. The morphological effect of carbon fibers on the thermal conductive composites. Int. J. Heat Mass Transf. 2020, 152, 119477. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, G.; Chen, Q.; Duan, L.; Tu, W. An effective thermal conductivity and thermomechanical homogenization scheme for a multiscale Nb3Sn filaments. Nanotechnol. Rev. 2021, 10, 187–200. [Google Scholar] [CrossRef]
- Dasgupta, A.; Agarwal, R. Orthotropic Thermal Conductivity of Plain-Weave Fabric Composites Using a Homogenization Technique. J. Compos. Mater. 1992, 26, 2736–2758. [Google Scholar] [CrossRef]
- Ning, Q.-G.; Chou, T.-W. Closed-form solutions of the in-plane effective thermal conductivities of woven-fabric composites. Compos. Sci. Technol. 1995, 55, 41–48. [Google Scholar] [CrossRef]
- Seo, B.H.; Cho, Y.J.; Youn, J.R.; Chung, K.; Kang, T.J.; Park, J.K. Model for thermal conductivities in spun yarn carbon fabric composites. Polym. Compos. 2005, 26, 791–798. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, F.; Li, B.; Wang, G.; Ye, J. Multiscale Simulation on the Thermal Response of Woven Composites with Hollow Reinforcements. Nanomaterials 2022, 12, 1276. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Guo, F.; Li, B.; Wang, G.; Ye, J. Multiscale numerical modeling for thermal behavior of plain-woven composites with interfacial and internal defects. Int. J. Heat Mass Transf. 2023, 202, 123711. [Google Scholar] [CrossRef]
- Larciprete, M.; Gloy, Y.; Voti, R.L.; Cesarini, G.; Leahu, G.; Bertolotti, M.; Sibilia, C. Temperature dependent emissivity of different stainless steel textiles in the infrared range. Int. J. Therm. Sci. 2016, 113, 130–135. [Google Scholar] [CrossRef]
- Larciprete, M.; Paoloni, S.; Voti, R.L.; Gloy, Y.; Sibilia, C. Infrared radiation characterization of several stainless steel textiles in the 3.5–5.1 μm infrared range. Int. J. Therm. Sci. 2018, 132, 168–173. [Google Scholar] [CrossRef]
- Kim, M.; Sung, D.H.; Park, Y.-B.; Park, K. Structural Optimization for Improvement of Thermal Conductivity of Woven Fabric Composites. Compos. Res. 2017, 30, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-C.; Xia, X.-L.; Li, D.-H.; Sun, C. Theoretical Modeling and Inverse Analysis of Thermal Conductivity of Skeletons in SiO2 Nano-Insulation Materials. Nanomaterials 2019, 9, 934. [Google Scholar] [CrossRef] [Green Version]
- Da, D.; Cui, X.; Long, K.; Cai, Y.; Li, G. Multiscale concurrent topology optimization of structures and microscopic multi-phase materials for thermal conductivity. Eng. Comput. 2019, 36, 126–146. [Google Scholar] [CrossRef]
- Su, Y.; Ma, Q.; Liang, T.; Yao, Y.; Jiao, Z.; Han, M.; Pang, Y.; Ren, L.; Zeng, X.; Xu, J.; et al. Optimization of Effective Thermal Conductivity of Thermal Interface Materials Based on the Genetic Algorithm-Driven Random Thermal Network Model. ACS Appl. Mater. Interfaces 2021, 13, 45050–45058. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Ruan, X.; Zhang, S.; Xiong, W.; Ullah, Z. Design optimization for thermal conductivity of plain-woven textile com-posites. Compos. Struct. 2021, 255, 112830. [Google Scholar] [CrossRef]
- Abu Bakar, I.A.; Kramer, O.; Bordas, S.; Rabczuk, T. Optimization of elastic properties and weaving patterns of woven composites. Compos. Struct. 2013, 100, 575–591. [Google Scholar] [CrossRef]
- Cherif, Z.E.; Poilâne, C.; Vivet, A.; Doudou, B.B.; Chen, J. About optimal architecture of plant fiber textile composite for mechanical and sorption properties. Compos. Struct. 2016, 140, 240–251. [Google Scholar] [CrossRef]
- Wang, G.; Tu, W.; Chen, Q. Characterization of interphase/interface parameters of unidirectional fibrous composites by op-timization-based inverse homogenization. Int. J. Appl. Mech. 2019, 11, 1950074. [Google Scholar] [CrossRef]
- Zeng, X.; Long, A.C.; Ashcroft, I.; Potluri, P. Fiber Architecture design of 3D Woven Composite with Genetic Algorithms: A Unit Cell Based Optimization Framework and Performance Assessment. In Proceedings of the 20th International Conference on Composite Materials, Copenhagen, Denmark, 19–24 July 2015. [Google Scholar]
- Tao, W.; Liu, Z.; Zhu, P.; Zhu, C.; Chen, W. Multi-scale design of three dimensional woven composite automobile fender using modified particle swarm optimization algorithm. Compos. Struct. 2017, 181, 73–83. [Google Scholar] [CrossRef]
- Yin, S.; He, Z.; Pindera, M.J. A new hybrid homogenization theory for periodic composites with random fiber distributions. Compos. Struct. 2021, 269, 113997. [Google Scholar] [CrossRef]
- Yin, S.; Pindera, M.-J. Homogenized moduli and local stress fields of random fiber composites under homogeneous and periodic boundary conditions. Eur. J. Mech. A/Solids 2022, 93, 104504. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks Proceedings, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Tu, W.; Pindera, M.J. Targeting the finite-deformation response of wavy biological tissues with bio-inspired material architectures. J. Mech. Behav. Biomed. Mater. 2013, 28, 291–308. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, G. PSO-driven micromechanical identification of in-situ properties of fiber-reinforced composites. Compos. Struct. 2019, 220, 608–621. [Google Scholar] [CrossRef]
- Wang, G.; Pindera, M.-J. Elasticity-based microstructural optimization: An integrated multiscale framework. Mater. Des. 2017, 132, 337–348. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, X.; Chen, M.; Zhu, Y.; Wu, H. Multiscale modeling and theoretical prediction for the thermal conductivity of porous plain-woven carbonized silica/phenolic composites. Compos. Struct. 2019, 215, 278–288. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Eberhart, R.C.; Shi, Y. Particle Swarm Optimization: Developments, Applications and Resources. In Proceedings of the IEEE International Conference on Evolutionary Computation, Seoul, Republic of Korea, 27–30 May 2001; pp. 81–86. [Google Scholar]
- Gao, M.; Yang, B.; Huang, Y.; Wang, G. Effects of general imperfect interface/interphase on the in-plane conductivity of thermal composites. Int. J. Heat Mass Transf. 2021, 172, 121213. [Google Scholar] [CrossRef]
Design Variable | Variable Description | Design Scope | Original Value [25] | Inverse Value | Error |
---|---|---|---|---|---|
[0.5, 1] | 0.726 W/(mK) | 0.725638 W/(mK) | 0.055% | ||
[0, 0.5] | 0.383 W/(mK) | 0.382584 W/(mK) | 1.3% |
Design Variable | Variable Description | Design Scope | Design Value |
---|---|---|---|
/[] | [0.5, 1.0] | 0.785 | |
/[] | [0.2, 0.5] | 0.342 | |
[0.5, 0.8] | 0.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Zhao, X.; Tu, W.; Liu, C.; Li, B.; Ye, J. Inverse Identification and Design of Thermal Parameters of Woven Composites through a Particle Swarm Optimization Method. Materials 2023, 16, 1953. https://doi.org/10.3390/ma16051953
Guo F, Zhao X, Tu W, Liu C, Li B, Ye J. Inverse Identification and Design of Thermal Parameters of Woven Composites through a Particle Swarm Optimization Method. Materials. 2023; 16(5):1953. https://doi.org/10.3390/ma16051953
Chicago/Turabian StyleGuo, Fei, Xiaoyu Zhao, Wenqiong Tu, Cheng Liu, Beibei Li, and Jinrui Ye. 2023. "Inverse Identification and Design of Thermal Parameters of Woven Composites through a Particle Swarm Optimization Method" Materials 16, no. 5: 1953. https://doi.org/10.3390/ma16051953
APA StyleGuo, F., Zhao, X., Tu, W., Liu, C., Li, B., & Ye, J. (2023). Inverse Identification and Design of Thermal Parameters of Woven Composites through a Particle Swarm Optimization Method. Materials, 16(5), 1953. https://doi.org/10.3390/ma16051953