The Fracture Load as a Function of the Material Thickness: The Key to Computing the Strength of Monolithic All-Ceramic Materials?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Production
2.2. Fracture Load Test
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poggio, C.E.; Ercoli, C.; Rispoli, L.; Maiorana, C.; Esposito, M. Metal-free materials for fixed prosthodontic restorations. Cochrane Database Syst. Rev. 2017, 12, CD009606. [Google Scholar] [CrossRef]
- Sulaiman, T.A. Materials in digital dentistry—A review. J. Esthet. Restor. Dent. 2019, 32, 171–181. [Google Scholar] [CrossRef]
- Güth, J.-F.; Stawarczyk, B.; Edelhoff, D.; Liebermann, A. Zirconia and its novel compositions: What do clinicians need to know? Quintessence Int. 2019, 50, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Keul, C.; Eichberger, M.; Figge, D.; Edelhoff, D.; Lumkemann, N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017, 48, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Spitznagel, F.A.; Boldt, J.; Gierthmuehlen, P.C. CAD/CAM Ceramic Restorative Materials for Natural Teeth. J. Dent. Res. 2018, 97, 1082–1091. [Google Scholar] [CrossRef]
- Yao, J.; Tang, H.; Gao, X.; McGrath, C.; Mattheos, N. Patients’ expectations to dental implant: A systematic review of the literature. Heal. Qual. Life Outcomes 2014, 12, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaspyridakos, P.; Chen, C.-J.; Singh, M.; Weber, H.-P.; Gallucci, G. Success Criteria in Implant Dentistry: A systematic review. J. Dent. Res. 2012, 91, 242–248. [Google Scholar] [CrossRef]
- Joiner, A. Tooth colour: A review of the literature. J. Dent. 2003, 32, 3–12. [Google Scholar] [CrossRef]
- Schweiger, J.; Güth, J.-F.; Schubert, O.; Sciuk, T.; Beuer, F.; Erdelt, K.-J. Predictable esthetics in all-ceramic restorations: Translucency as a function of material thickness. Int. J. Comput. Dent. 2021, 24, 147–155. [Google Scholar]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Ritter, A.V.; Vallittu, P.K.; Närhi, T.O.; Lassila, L.V. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent. Mater. 2015, 31, 1180–1187. [Google Scholar] [CrossRef]
- Wang, F.; Takahashi, H.; Iwasaki, N. Translucency of dental ceramics with different thicknesses. J. Prosthet. Dent. 2013, 110, 14–20. [Google Scholar] [CrossRef]
- Schubert, O.; Graf, T.; Schweiger, J.; Güth, J.F.; Sciuk, T.; Erdelt, K.J. Predictable esthetics in hybrid and resin-based CAD-CAM restorative materials: Translucency as a function of material thickness. Int. J. Comput. Dent. 2023, 1–40. [Google Scholar] [CrossRef]
- Dikicier, S.; Ayyildiz, S.; Ozen, J.; Sipahi, C. Influence of core thickness and artificial aging on the biaxial flexural strength of different all-ceramic materials: An in-vitro study. Dent. Mater. J. 2017, 36, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Sieper, K.; Wille, S.; Kern, M. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns. J. Mech. Behav. Biomed. Mater. 2017, 74, 342–348. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhu, Z.; Jiao, T.; Sun, J. Effect of Aging Time and Thickness on Low-Temperature Degradation of Dental Zirconia. J. Prosthodont. 2019, 28, e404–e410. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.; Egli, G.; Zaruba, M.; Mehl, A. Influence of material thickness on fractural strength of CAD/CAM fabricated ceramic crowns. Dent. Mater. J. 2017, 36, 778–783. [Google Scholar] [CrossRef] [Green Version]
- Nordahl, N.; von Steyern, P.V.; Larsson, C. Fracture strength of ceramic monolithic crown systems of different thickness. J. Oral Sci. 2015, 57, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Edelhoff, D.; Liebermann, A.; Beuer, F.; Stimmelmayr, M.; Güth, J.-F. Minimally invasive treatment options in fixed prosthodontics. Quintessence Int 2016, 47, 207–216. [Google Scholar] [CrossRef]
- Schwindling, F.S.; Waldecker, M.; Rammelsberg, P.; Rues, S.; Bömicke, W. Tooth substance removal for ceramic single crown materials—An in vitro comparison. Clin. Oral Investig. 2019, 23, 3359–3366. [Google Scholar] [CrossRef] [PubMed]
- Graf, T.; Schweiger, J.; Güth, J.-F.; Sciuk, T.; Schubert, O.; Erdelt, K.-J. Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials. Polymers 2022, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. 2015, 31, 603–623. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, L.H.; De Lima, E.; Miranda, R.B.D.P.; Favero, S.S.; Lohbauer, U.; Cesar, P.F. Dental ceramics: A review of new materials and processing methods. Braz. Oral Res. 2017, 31, e58. [Google Scholar] [CrossRef] [PubMed]
- ISO 6872:2015; Dentistry—Ceramic materials. European Committee for Standardization: Brussels, Belgium, 2015.
- Chen, Y.-M.; Smales, R.J.; Yip, K.H.-K.; Sung, W.-J. Translucency and biaxial flexural strength of four ceramic core materials. Dent. Mater. 2008, 24, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.K.; Guilardi, L.F.; Dapieve, K.S.; Kleverlaan, C.J.; Rippe, M.P.; Valandro, L.F. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. J. Mech. Behav. Biomed. Mater. 2018, 85, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Sen, N.; Us, Y.O. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J. Prosthet. Dent. 2018, 119, 593–599. [Google Scholar] [CrossRef]
- Tinschert, J. Oxidkeramiken und CAD/CAM-Technologien: Atlas für Klinik, Labortechnik und Werkstoffkunde; Deutscher Zahnärzte Verlag: Köln, Germany, 2007. [Google Scholar]
- Korber, K.H.; Ludwig, K. Maximale Kaukraft als Berechnungsfaktor zahntechnischer Konstruktionen. J. Dent. Lab. 1983, 31, 55–60. [Google Scholar]
- Braun, S.; Bantleon, H.P.; Hnat, W.P.; Freudenthaler, J.W.; Marcotte, M.R.; Johnson, B.E. A study of bite force, part 1: Relationship to various physical characteristics. Angle Orthod. 1995, 65, 367–372. [Google Scholar] [CrossRef]
- Edmonds, H.M.; Glowacka, H. The ontogeny of maximum bite force in humans. J. Anat. 2020, 237, 529–542. [Google Scholar] [CrossRef]
- Wiedenmann, F.; Böhm, D.; Eichberger, M.; Edelhoff, D.; Stawarczyk, B. Influence of different surface treatments on two-body wear and fracture load of monolithic CAD/CAM ceramics. Clin. Oral Investig. 2020, 24, 3049–3060. [Google Scholar] [CrossRef]
- Alakkad, L.; Kostagianni, A.; Finkelman, M.; Maawadh, A.; Ali, A.; Papathanasiou, A. Biaxial flexural strength of various CAD-CAM glass-ceramic materials. Am. J. Dent. 2021, 34, 91–96. [Google Scholar]
- Abdulrahman, S.; Mahm, C.V.S.; Talabani, R.; Abdulateef, D. Evaluation of the clinical success of four different types of lithium disilicate ceramic restorations: A retrospective study. BMC Oral Health 2021, 21, 625. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Delgado, A.; Donovan, T.E. Fracture rate of 188695 lithium disilicate and zirconia ceramic restorations after up to 7.5 years of clinical service: A dental laboratory survey. J. Prosthet. Dent. 2020, 123, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Beuer, F.; Schweiger, J.; Edelhoff, D. Digital dentistry: An overview of recent developments for CAD/CAM generated restorations. Br. Dent. J. 2008, 204, 505–511. [Google Scholar] [CrossRef] [PubMed]
Material | Code | Material Class | Manufacturing Process | Batch # | Manufacturer |
---|---|---|---|---|---|
IPS Empress CAD LT A2 | ESS | Leucite reinforced silicate ceramic | CAD-CAM | U36021 | Ivoclar, Schaan, Liechtenstein |
IPS e.max CAD LT A2 | EMX | Lithium Disilicate ceramic | CAD-CAM | U32750 | Ivoclar, Schaan, Liechtenstein |
LAVA Plus HT A2 | LP | 3Y-TCP Zirconia | CAD-CAM | 601514 | 3M, St. Paul, MN |
Material | Material Thickness | Flexural Strength 1 (Mean ± SD) [MPa] | ||||
---|---|---|---|---|---|---|
0.4 mm | 0.7 mm | 1.0 mm | 1.3 mm | 1.6 mm | ||
Fracture Load (Mean ± SD) [N] | ||||||
ESS | 14.65 ± 2.25 (A) | 48.65 ± 6.17 (B) | 90.92 ± 11.32 (C) | 154.02 ± 13.50 (D) | 246.45 ± 31.35 (E) | 136.25 ± 16.60 |
EMX | 41.29 ± 7.03 (F) | 124.95 ± 15.60 (G) | 209.29 ± 36.39 (H) | 355.65 ± 100.76 (I) | 709.00 ± 87.37 (J) | 288.41 ± 54.93 |
LP | 104.97 ± 19.71 (K) | 348.76 ± 68.40 (L) | 768.17 ± 140.31 (M) | 1244.02 ± 129.01 (N) | 1844.81 ± 216.77 (O) | 1204.75 ± 213.90 |
Material | Linear | Quadratic | Cubic |
---|---|---|---|
ESS | 0.882 | 0.973 | 0.974 1 |
EMX | 0.802 | 0.931 | 0.947 1 |
LP | 0.895 | 0.969 1 | 0.969 1 |
Material | Material-Specific Cubic Fracture Load Coefficients [Means ± SD] | Sig. 1 | |||
---|---|---|---|---|---|
b0 (N) | b1 (N/mm) | b2 (N/mm2) | b3 (N/mm3) | ||
ESS cubic | −0.50 ± 3.72 | 23.29 ± 23.75 | 44.75 ± 38.07 | 23.03 ± 15.80 | 0.000 |
ESS quadratic | 1.08 | −7.80 | 99.49 | 0.000 | |
ESS linear | −29.83 | 148.23 | 0.000 | ||
EMX cubic | −4.87 ± 15.97 | 263.94 ± 97.32 | −352.46 ± 153.94 | 289.65 ± 63.60 | 0.000 |
EMX quadratic | 17.86 | −132.91 | 338.43 | 0.000 | |
EMX linear | −96.80 | 405.94 | 0.000 | ||
LP cubic | 0.25 ± 34.30 | −136.64 ± 19.98 | 1028.33 ± 131.87 | −139.57 ± 34.30 | 0.000 |
LP quadratic | −11.50 | 56.30 | 694.62 | 0.000 | |
LP linear | −257.96 | 1171.67 | 0.000 |
Material | The Calculated Fracture Loads Dependent on The Material Thickness (mm) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | |
ESS [N] | 11.1 | 17.5 | 25.2 | 34.6 | 45.6 | 58.6 | 73.5 | 90.6 | 109.9 | 131.7 | 156.0 | 183.0 | 212.9 | 245.7 | 281.6 | 320.7 | 363.3 | 409.3 |
EMX [N] | 50.4 | 62.9 | 75.2 | 89.2 | 106.5 | 129.0 | 158.3 | 196.3 | 244.5 | 304.8 | 379.0 | 468.6 | 575.6 | 701.5 | 848.3 | 1017.5 | 1210.9 | 1430.4 |
LP [N] | 48.0 | 101.2 | 171.6 | 258.3 | 360.6 | 477.6 | 608.5 | 752.4 | 908.5 | 1075.9 | 1253.9 | 1441.5 | 1638.0 | 1842.5 | 2054.1 | 2272.1 | 2495.6 | 2723.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schweiger, J.; Erdelt, K.-J.; Graf, T.; Sciuk, T.; Edelhoff, D.; Güth, J.-F. The Fracture Load as a Function of the Material Thickness: The Key to Computing the Strength of Monolithic All-Ceramic Materials? Materials 2023, 16, 1997. https://doi.org/10.3390/ma16051997
Schweiger J, Erdelt K-J, Graf T, Sciuk T, Edelhoff D, Güth J-F. The Fracture Load as a Function of the Material Thickness: The Key to Computing the Strength of Monolithic All-Ceramic Materials? Materials. 2023; 16(5):1997. https://doi.org/10.3390/ma16051997
Chicago/Turabian StyleSchweiger, Josef, Kurt-Jürgen Erdelt, Tobias Graf, Thomas Sciuk, Daniel Edelhoff, and Jan-Frederik Güth. 2023. "The Fracture Load as a Function of the Material Thickness: The Key to Computing the Strength of Monolithic All-Ceramic Materials?" Materials 16, no. 5: 1997. https://doi.org/10.3390/ma16051997
APA StyleSchweiger, J., Erdelt, K. -J., Graf, T., Sciuk, T., Edelhoff, D., & Güth, J. -F. (2023). The Fracture Load as a Function of the Material Thickness: The Key to Computing the Strength of Monolithic All-Ceramic Materials? Materials, 16(5), 1997. https://doi.org/10.3390/ma16051997