Study of Applying Naturally Occurring Mineral Materials for Silicone Pressure-Sensitive Adhesives
Abstract
:1. Introduction
2. Materials, Chemicals, and Methods
2.1. Materials
2.2. Chemicals
2.3. Functionalization of Palygorskite with MPTMS
2.4. Preparation of Si-PSA Modification Tape
2.5. Fourier Transform Infrared
2.6. Thermogravimetric Analysis
2.7. Elemental Analysis
2.8. Pot-Life
2.9. Adhesion
2.10. Cohesion
2.11. Tack
2.12. Shrinkage
3. Results and Discussion
3.1. Fourier Transform Infrared (FTIR/ATR)
3.2. Thermogravimetric Analysis
3.3. Elemental Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vendamme, R.; Schüwer, N.; Eevers, W. Recent Synthetic Approaches and Emerging Bio-Inspired Strategies for the Development of Sustainable Pressure-Sensitive Adhesives Derived from Renewable Building Blocks. J. Appl. Polym. Sci. 2014, 131, 40669. [Google Scholar] [CrossRef]
- Creton, C. Pressure-Sensitive Adhesives: An Introductory Course. MRS Bull. 2003, 28, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Vineeth, S.K.; Gadhave, R.V. Sustainable Raw Materials in Hot Melt Adhesives: A Review. Open J. Polym. Chem. 2020, 10, 49. [Google Scholar]
- Feldstein, M.M.; Siegel, R.A. Molecular and Nanoscale Factors Governing Pressure-Sensitive Adhesion Strength of Viscoelastic Polymers. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 739–772. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Thumm, A.; Carpenter, J.E.; Hati, N. Investigating the Extent of Urea Formaldehyde Resin Cure in Medium Density Fibreboard: Characterisation of Extractable Resin Components. Int. J. Adhes. Adhes. 2014, 50, 50–56. [Google Scholar] [CrossRef]
- Dhawale, P.V.; Vineeth, S.K.; Gadhave, R.V.; MJ, J.F.; Supekar, M.V.; Thakur, V.K.; Raghavan, P. Tannin as a Renewable Raw Material for Adhesive Applications: A Review. Mater. Adv. 2022, 3, 3365–3388. [Google Scholar] [CrossRef]
- Mazurek, P.; Vudayagiri, S.; Skov, A.L. How to Tailor Flexible Silicone Elastomers with Mechanical Integrity: A Tutorial Review. Chem. Soc. Rev. 2019, 48, 1448–1464. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Wang, L.; Shen, S. Fabrication of Ni–P/Palygorskite Core–Shell Linear Powder via Electroless Deposition. Appl. Surf. Sci. 2011, 257, 10211–10217. [Google Scholar] [CrossRef]
- Buchwald, A.; Hohmann, M.; Posern, K.; Brendler, E. The Suitability of Thermally Activated Illite/Smectite Clay as Raw Material for Geopolymer Binders. Appl. Clay Sci. 2009, 46, 300–304. [Google Scholar] [CrossRef]
- Câmara, A.B.F.; Sales, R.V.; Bertolino, L.C.; Furlanetto, R.P.P.; Rodríguez-Castellón, E.; de Carvalho, L.S. Novel Application for Palygorskite Clay Mineral: A Kinetic and Thermodynamic Assessment of Diesel Fuel Desulfurization. Adsorption 2020, 26, 267–282. [Google Scholar] [CrossRef]
- Ovarlez, S.; Giulieri, F.; Delamare, F.; Sbirrazzuoli, N.; Chaze, A.-M. Indigo–Sepiolite Nanohybrids: Temperature-Dependent Synthesis of Two Complexes and Comparison with Indigo–Palygorskite Systems. Microporous Mesoporous Mater. 2011, 142, 371–380. [Google Scholar] [CrossRef]
- Álvarez, A.; Santarén, J.; Esteban-Cubillo, A.; Aparicio, P. Chapter 12—Current Industrial Applications of Palygorskite and Sepiolite. In Developments in Clay Science; Galàn, E., Singer, A., Eds.; Developments in Palygorskite-Sepiolite Research; Elsevier: Amsterdam, The Netherlands, 2011; Volume 3, pp. 281–298. [Google Scholar]
- De Ros, L.F.; Scherer, C.M.S. Stratigraphic Controls on the Distribution of Diagenetic Processes, Quality and Heterogeneity of Fluvial-Aeolian Reservoirs from the Recôncavo Basin, Brazil. In Linking Diagenesis to Sequence Stratigraphy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 105–132. ISBN 978-1-118-48534-7. [Google Scholar]
- Loch, P. Developing Functional Layered Materials: From Synthesis and Characterization towards Applications. Ph.D. Thesis, University of Bayreuth, Bayreuth, Germany, 2022. [Google Scholar]
- Liu, J.; Zhong, J.; Chen, Z.; Mao, J.; Liu, J.; Zhang, Z.; Li, X.; Ren, S. Preparation, Characterization, Application and Structure Evolution of Attapulgite: From Nanorods to Nanosheets. Appl. Surf. Sci. 2021, 565, 150398. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Ding, J.; Hui, A.; Liu, X.; Wang, A. Preparation, Characterization and Performance Evaluation of Chitosan/Palygorskite/Glycyrrhizic Acid Nanocomposite Films. Appl. Clay Sci. 2022, 216, 106322. [Google Scholar] [CrossRef]
- Ding, J.; Huang, D.; Wang, W.; Wang, Q.; Wang, A. Effect of Removing Coloring Metal Ions from the Natural Brick-Red Palygorskite on Properties of Alginate/Palygorskite Nanocomposite Film. Int. J. Biol. Macromol. 2019, 122, 684–694. [Google Scholar] [CrossRef]
- Tang, J.; Zong, L.; Mu, B.; Kang, Y.; Wang, A. Attapulgite/Carbon Composites as a Recyclable Adsorbent for Antibiotics Removal. Korean J. Chem. Eng. 2018, 35, 1650–1661. [Google Scholar] [CrossRef]
- Jlassi, K.; Chehimi, M.M.; Thomas, S. Clay-Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-323-46161-0. [Google Scholar]
- Giménez Pérez, R.; Serrano Prieto, M.B.; San Miguel Arnanz, V.; Cabanelas Valcárcel, J.C. Recent Advances in MXene/Epoxy Composites: Trends and Prospects. Polymers 2022, 14, 1170. [Google Scholar] [CrossRef]
- Application of Functionalized Nanomaterials as Effective Adsorben…: Ingenta Connect. Available online: https://www.ingentaconnect.com/content/ben/cac/2021/00000017/00000001/art00005 (accessed on 29 December 2022).
- Trelles, J.A.; Lapponi, M.J. Immobilization Techniques Applied to the Development of Biocatalysts for the Synthesis of Nucleoside Analogue Derivatives. Curr. Pharm. Des. 2017, 23, 6879–6897. [Google Scholar] [CrossRef]
- Zhao, F.; Zhu, J.; Peng, T.; Liu, H.; Ge, S.; Xie, H.; Xie, L.; Jiang, C. Preparation of Functionalized Halloysite Reinforced Polyimide Composite Aerogels with Excellent Thermal Insulation Properties. Appl. Clay Sci. 2021, 211, 106200. [Google Scholar] [CrossRef]
- Bischoff, E.; Daitx, T.; Simon, D.A.; Schrekker, H.S.; Liberman, S.A.; Mauler, R.S. Organosilane-Functionalized Halloysite for High Performance Halloysite/Heterophasic Ethylene-Propylene Copolymer Nanocomposites. Appl. Clay Sci. 2015, 112–113, 68–74. [Google Scholar] [CrossRef]
- Mao, S.; Gao, M. Functional Organoclays for Removal of Heavy Metal Ions from Water: A Review. J. Mol. Liq. 2021, 334, 116143. [Google Scholar] [CrossRef]
- Thue, P.S.; Sophia, A.C.; Lima, E.C.; Wamba, A.G.; de Alencar, W.S.; dos Reis, G.S.; Rodembusch, F.S.; Dias, S.L. Synthesis and Characterization of a Novel Organic-Inorganic Hybrid Clay Adsorbent for the Removal of Acid Red 1 and Acid Green 25 from Aqueous Solutions. J. Clean. Prod. 2018, 171, 30–44. [Google Scholar] [CrossRef]
- Wamba, A.G.; Kofa, G.P.; Koungou, S.N.; Thue, P.S.; Lima, E.C.; dos Reis, G.S.; Kayem, J.G. Grafting of Amine Functional Group on Silicate Based Material as Adsorbent for Water Purification: A Short Review. J. Environ. Chem. Eng. 2018, 6, 3192–3203. [Google Scholar] [CrossRef]
- Ymélé, E.; Jiokeng, S.L.Z.; Tchieno, F.M.M.; Tonle, I.K. Nanohybrid Materials from Amine Functionalization of Sepiolite: Preparation, Characterization and Application as Electrode Modifiers for the Electroanalytical Detection of Heavy Metal Ions. Adv. Mater. Sci. 2017, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Quang Khieu, D.; Dang Son, B.H.; Thi Thanh Chau, V.; Dinh Du, P.; Hai Phong, N.; Thi Diem Chau, N. 3-Mercaptopropyltrimethoxysilane Modified Diatomite: Preparation and Application for Voltammetric Determination of Lead (II) and Cadmium (II). J. Chem. 2017, 2017, 9560293. [Google Scholar] [CrossRef]
- Lee, S.M.; Tiwari, D. Organo and Inorgano-Organo-Modified Clays in the Remediation of Aqueous Solutions: An Overview. Appl. Clay Sci. 2012, 59–60, 84–102. [Google Scholar] [CrossRef]
- de Mello Ferreira Guimarães, A.; Ciminelli, V.S.T.; Vasconcelos, W.L. Smectite Organofunctionalized with Thiol Groups for Adsorption of Heavy Metal Ions. Appl. Clay Sci. 2009, 42, 410–414. [Google Scholar] [CrossRef]
- Tonle, I.K.; Ngameni, E.; Walcarius, A. Preconcentration and Voltammetric Analysis of Mercury(II) at a Carbon Paste Electrode Modified with Natural Smectite-Type Clays Grafted with Organic Chelating Groups. Sens. Actuators B Chem. 2005, 110, 195–203. [Google Scholar] [CrossRef]
- Wang, W.; Wang, A. 2-Palygorskite Nanomaterials: Structure, Properties, and Functional Applications. In Nanomaterials from Clay Minerals; Wang, A., Wang, W., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 21–133. ISBN 978-0-12-814533-3. [Google Scholar]
- Antosik, A.K.; Mozelewska, K.; Pełech, R.; Czech, Z.; Antosik, N.A. Conductive Electric Tapes Based on Silicone Pressure-Sensitive Adhesives. Silicon 2021, 13, 867–875. [Google Scholar] [CrossRef]
- Lin, S.B.; Durfee, L.D.; Ekeland, R.A.; McVie, J.; Schalau, G.K. Recent Advances in Silicone Pressure-Sensitive Adhesives. J. Adhes. Sci. Technol. 2007, 21, 605–623. [Google Scholar] [CrossRef]
- Antosik, A.K.; Mozelewska, K.; Czech, Z.; Piątek-Hnat, M. Influence of Montmorillonite on the Properties of Silicone Pressure-Sensitive Adhesives: Preparation of a Double-Sided Tape Based on the Best Composition. Silicon 2020, 12, 1887–1893. [Google Scholar] [CrossRef]
- Zheng, J.; Zong, Y.; Zhao, G.; Yu, Z.; Wang, M.; Zhu, C.; Li, C.; Liu, J.; Gui, D. Nematic Liquid Crystal 4-Cyano-4′-Pentylbiphenyl Functionalization of MWNTs for Improved Thermal and Mechanical Properties of Silicone Pressure Sensitive Adhesives. Int. J. Adhes. Adhes. 2020, 98, 102457. [Google Scholar] [CrossRef]
- Combined Dynamic Network and Filler Interface Approach for Improved Adhesion and Toughness in Pressure-Sensitive Adhesives|ACS Applied Polymer Materials. Available online: https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00992 (accessed on 29 December 2022).
- Antosik, A.K.; Gziut, K.; Musik, M.; Miądlicki, P.; Weisbrodt, M. Development and Characterization of Silicone Pressure-Sensitive Adhesives Modified Sepiolite for Self-Adhesive Tape Applications. In Proceedings of the 2nd International Conference on Industrial Applications of Adhesives 2022; da Silva, L.F.M., Adams, R.D., Dilger, K., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 19–32. [Google Scholar]
- Michel, M.M. A Study of Application of Chalcedonite as a Manganese Dioxide Carrier. Ann. Wars. Univ. Life Sci.-SGGW Land Reclam. 2012, 44, 63–73. [Google Scholar] [CrossRef]
- Kosk, I. Kompleksowe Zagospodarowanie Odpadowych Surowców Chalcedonitowych z Osadników Kopalni Inow\lódz w Ochronie Środowiska Oraz w Przemyśle Materiałów Budowlanych. Gospod. Surowcami Miner. 2010, 26, 5–22. [Google Scholar]
- Gawenda, T.; Surowiak, A.; Krawczykowska, A.; Stempkowska, A.; Niedoba, T. Analysis of the Aggregate Production Process with Different Geometric Properties in the Light Fraction Separator. Materials 2022, 15, 4046. [Google Scholar] [CrossRef]
- Bartucca, M.L.; Cerri, M.; Del Buono, D.; Forni, C. Use of Biostimulants as a New Approach for the Improvement of Phytoremediation Performance—A Review. Plants 2022, 11, 1946. [Google Scholar] [CrossRef]
- Radziemska, M.; Bęś, A.; Gusiatin, Z.M.; Sikorski, Ł.; Brtnicky, M.; Majewski, G.; Liniauskienė, E.; Pecina, V.; Datta, R.; Bilgin, A. Successful Outcome of Phytostabilization in Cr (VI) Contaminated Soils Amended with Alkalizing Additives. Int. J. Environ. Res. Public Health 2020, 17, 6073. [Google Scholar] [CrossRef]
- Radziemska, M. Study of Applying Naturally Occurring Mineral Sorbents of Poland (Dolomite Halloysite, Chalcedonite) for Aided Phytostabilization of Soil Polluted with Heavy Metals. Catena 2018, 163, 123–129. [Google Scholar] [CrossRef]
- Naziemiec, Z.; Pichniarczyk, P.; Saramak, D. Current Issues of Processing and Industrial Utilization of Chalcedonite. Inżynieria Miner. 2017, 18, 89–96. [Google Scholar]
- Gawenda, T.; Krawczykowski, D.; Krawczykowska, A.; Saramak, A.; Nad, A. Application of Dynamic Analysis Methods into Assessment of Geometric Properties of Chalcedonite Aggregates Obtained by Means of Gravitational Upgrading Operations. Minerals 2020, 10, 180. [Google Scholar] [CrossRef] [Green Version]
- Bartkowiak, M.; Czech, Z.; Mozelewska, K.; Kabatc, J. Comparison between Thermal Crosslinkers Based on Melamine-Formaldehyde and Benzoguanamine Resin and Their Influence on Main Performance of Acrylic Pressure-Sensitive Adhesives as Tack, Peel Adhesion, Shear Strength and Pot-Life. Polym. Test. 2020, 89, 106596. [Google Scholar] [CrossRef]
- Sowa, D.; Czech, Z.; Byczyński, Ł. Peel Adhesion of Acrylic Pressure-Sensitive Adhesives on Selected Substrates versus Their Surface Energies. Int. J. Adhes. Adhes. 2014, 49, 38–43. [Google Scholar] [CrossRef]
- Sasaki, M.; Fujita, K.; Adachi, M.; Fujii, S.; Nakamura, Y.; Urahama, Y. The Effect of Tackifier on Phase Structure and Peel Adhesion of a Triblock Copolymer Pressure-Sensitive Adhesive. Int. J. Adhes. Adhes. 2008, 28, 372–381. [Google Scholar] [CrossRef]
- Sun, S.; Li, M.; Liu, A. A Review on Mechanical Properties of Pressure Sensitive Adhesives. Int. J. Adhes. Adhes. 2013, 41, 98–106. [Google Scholar] [CrossRef]
- Antosik, A.K.; Makuch, E.; Gziut, K. Influence of Modified Attapulgite on Silicone Pressure-Sensitive Adhesives Properties. J. Polym. Res. 2022, 29, 135. [Google Scholar] [CrossRef]
- Tordjeman, P.; Papon, E.; Villenave, J. Tack Properties of Pressure-sensitive Adhesives. J. Polym. Sci. B Polym. Phys. 2000, 38, 1201–1208. [Google Scholar] [CrossRef]
- Shawabkeh, R.A.; Tutunji, M.F. Experimental Study and Modeling of Basic Dye Sorption by Diatomaceous Clay. Appl. Clay Sci. 2003, 24, 111–120. [Google Scholar] [CrossRef]
- Khraisheh, M.A.M.; Al-Ghouti, M.A.; Allen, S.J.; Ahmad, M.N. Effect of OH and Silanol Groups in the Removal of Dyes from Aqueous Solution Using Diatomite. Water Res. 2005, 39, 922–932. [Google Scholar] [CrossRef]
- Yuan, P.; Wu, D.Q.; He, H.P.; Lin, Z.Y. The Hydroxyl Species and Acid Sites on Diatomite Surface: A Combined IR and Raman Study. Appl. Surf. Sci. 2004, 227, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wu, Z.; Kao, H. Study on Preparation, Structure and Thermal Energy Storage Property of Capric-Palmitic Acid/Attapulgite Composite Phase Change Materials. Appl. Energy 2011, 88, 3125–3132. [Google Scholar] [CrossRef]
- Boudriche, L.; Chamayou, A.; Calvet, R.; Hamdi, B.; Balard, H. Influence of Different Dry Milling Processes on the Properties of an Attapulgite Clay, Contribution of Inverse Gas Chromatography. Powder Technol. 2014, 254, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Tolia, G.; Li, S.K. Silicone Adhesive Matrix of Verapamil Hydrochloride to Provide PH-Independent Sustained Release. AAPS PharmSciTech 2014, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, L.; Zhou, L.; Li, Y.; Pan, F.; Zhang, S. Synthesis and Properties of Waterborne Polyurethane / Attapulgite Nanocomposites. Compos. Sci. Technol. 2011, 71, 1280–1285. [Google Scholar] [CrossRef]
- Boudriche, L.; Calvet, R.; Chamayou, A.; Hamdi, B. Influence of different wet milling on the properties of an attapulgite clay, contribution of inverse gas chromatography. Power Technol. 2021, 378, 29–39. [Google Scholar] [CrossRef]
- Bertuoli, P.T.; Piazza, D.; Scienza, L.C.; Zattera, A.J. Applied Clay Science Preparation and Characterization of Montmorillonite Modi Fi Ed with 3-Aminopropyltriethoxysilane. Appl. Clay Sci. 2014, 87, 46–51. [Google Scholar] [CrossRef]
- Piwoński, I.; Grobelny, J.; Cichomski, M.; Celichowski, G.; Rogowski, J. Investigation of 3-Mercaptopropyltrimethoxysilane Self-Assembled Monolayers on Au(111) Surface. Appl. Surf. Sci. 2005, 242, 147–153. [Google Scholar] [CrossRef]
- Johansson, U.; Holmgren, A.; Forsling, W.; Frost, R.L. Adsorption of Silane Coupling Agents onto Kaolinite Surfaces. Clay Miner. 1999, 34, 239–246. [Google Scholar] [CrossRef]
- Tiu, B.D.B.; Delparastan, P.; Ney, M.R.; Gerst, M.; Messersmith, P.B. Enhanced Adhesion and Cohesion of Bioinspired Dry/Wet Pressure-Sensitive Adhesives. ACS Appl. Mater. Interfaces 2019, 11, 28296–28306. [Google Scholar] [CrossRef] [Green Version]
- Czech, Z.; Goracy, K. Characterization of the Crosslinking Process of Silicone Pressure-Sensitive Adhesives. Polimery 2005, 50, 762–764. [Google Scholar] [CrossRef] [Green Version]
N (%) | C (%) | H (%) | S (%) | Reaction Efficiency (%) | |
---|---|---|---|---|---|
palygorskite-calcined | 0.00 ± 0.00 | 1.08 ± 0.02 | 1.44 ± 0.01 | 0.00 ± 0.00 | - |
palygorskite-0.5MPTMS | 0.00 ± 0.00 | 1.60 ± 0.03 | 1.52 ± 0.02 | 0.44 ± 0.01 | 66.00 ± 0.00 |
palygorskite-1.0MPTMS | 0.00 ± 0.00 | 1.51 ± 0.05 | 1.50 ± 0.05 | 0.42 ± 0.02 | 28.00 ± 0.20 |
palygorskite-1.5MPTMS | 0.00 ± 0.00 | 1.50 ± 0.08 | 1.50 ± 0.07 | 0.42 ± 0.04 | 18.70 ± 0.22 |
* palygorskite-0.5MPTMS | 0.00 | 0.85 | 0.15 | 0.75 | |
** palygorskite-1.0MPTMS | 0.00 | 1.70 | 0.30 | 1.50 | |
*** palygorskite-1.5MPTMS | 0.00 | 2.55 | 0.45 | 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antosik, A.K.; Kucharska, E.; Mozelewska, K. Study of Applying Naturally Occurring Mineral Materials for Silicone Pressure-Sensitive Adhesives. Materials 2023, 16, 2092. https://doi.org/10.3390/ma16052092
Antosik AK, Kucharska E, Mozelewska K. Study of Applying Naturally Occurring Mineral Materials for Silicone Pressure-Sensitive Adhesives. Materials. 2023; 16(5):2092. https://doi.org/10.3390/ma16052092
Chicago/Turabian StyleAntosik, Adrian Krzysztof, Edyta Kucharska, and Karolina Mozelewska. 2023. "Study of Applying Naturally Occurring Mineral Materials for Silicone Pressure-Sensitive Adhesives" Materials 16, no. 5: 2092. https://doi.org/10.3390/ma16052092
APA StyleAntosik, A. K., Kucharska, E., & Mozelewska, K. (2023). Study of Applying Naturally Occurring Mineral Materials for Silicone Pressure-Sensitive Adhesives. Materials, 16(5), 2092. https://doi.org/10.3390/ma16052092