Effects of N-Alkanol Adsorption on Bubble Acceleration and Local Velocities in Solutions of the Homologous Series from Ethanol to N-Decanol
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Local Velocities
3.2. Acceleration
3.3. Adsorption Time
3.4. Terminal Velocities
3.5. Maximum and Terminal Velocities vs. Adsorption Coverages
3.6. Mixtures of the High and Low Surface-Active Agent Compounds
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajapakse, N.; Zargar, M.; Sen, T.; Khiadani, M. Effects of Influent Physicochemical Characteristics on Air Dissolution, Bubble Size and Rise Velocity in Dissolved Air Flotation: A Review. Sep. Purif. Technol. 2022, 289, 120772. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, W.; Binama, M.; Sun, J.; Cai, W. International Journal of Thermal Sciences Review on Bubble Dynamic of Subcooled Flow Boiling-Part a: Research Methodologies. Int. J. Therm. Sci. 2022, 184, 108019. [Google Scholar] [CrossRef]
- Jin, N.; Zhang, F.; Cui, Y.; Sun, L.; Gao, H.; Pu, Z.; Yang, W. Environment-Friendly Surface Cleaning Using Micro-Nano Bubbles. Particuology 2022, 66, 1–9. [Google Scholar] [CrossRef]
- Inbaoli, A.; Sujith Kumar, C.S.; Jayaraj, S. A Review on Techniques to Alter the Bubble Dynamics in Pool Boiling. Appl. Therm. Eng. 2022, 214, 118805. [Google Scholar] [CrossRef]
- Dukhin, S.S.; Kovalchuk, V.I.; Gochev, G.G.; Lotfi, M.; Krzan, M.; Malysa, K.; Miller, R. Dynamics of Rear Stagnant Cap Formation at the Surface of Spherical Bubbles Rising in Surfactant Solutions at Large Reynolds Numbers under Conditions of Small Marangoni Number and Slow Sorption Kinetics. Adv. Colloid Interface Sci. 2015, 222, 260–274. [Google Scholar] [CrossRef]
- Zholkovskij, E.K.; Koval’Chuk, V.I.; Dukhin, S.S.; Miller, R. Dynamics of Rear Stagnant Cap Formation at Low Reynolds Numbers. 1. Slow Sorption Kinetics. J. Colloid Interface Sci. 2000, 226, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, H.; Darjani, S.; Mazloomi, H.; Mozaffari, S. Preparation of Stable Multiple Emulsions Using Food-Grade Emulsifiers: Evaluating the Effects of Emulsifier Concentration, W/O Phase Ratio, and Emulsification Process. SN Appl. Sci. 2020, 2, 2002. [Google Scholar] [CrossRef]
- Ghasemi, H.; Mozaffari, S.; Mohammadghasemi, H.; Jemere, A.B.; Nazemifard, N. Microfluidic Platforms for Characterization of Crude Oil Emulsion Stability. Can. J. Chem. 2022, 100, 484–494. [Google Scholar] [CrossRef]
- Krzan, M.; Malysa, K. Profiles of Local Velocities of Bubbles in N-Butanol, n-Hexanol and n-Nonanol Solutions. Colloids Surf. A Physicochem. Eng. Asp. 2002, 207, 279–291. [Google Scholar] [CrossRef]
- Jarek, E.; Warszynski, P.; Krzan, M. Influence of Different Electrolytes on Bubble Motion in Ionic Surfactants Solutions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 505, 171–178. [Google Scholar] [CrossRef]
- Krzan, M.; Zawala, J.; Malysa, K. Development of Steady State Adsorption Distribution over Interface of a Bubble Rising in Solutions of N-Alkanols (C5, C8) and n-Alkyltrimethylammonium Bromides (C8, C12, C16). Colloids Surf. A Physicochem. Eng. Asp. 2007, 298, 42–51. [Google Scholar] [CrossRef]
- Ulaganathan, V.; Krzan, M.; Lotfi, M.; Dukhin, S.S.; Kovalchuk, V.I.; Javadi, A.; Gunes, D.Z.; Gehin-Delval, C.; Malysa, K.; Miller, R. Influence of β-Lactoglobulin and Its Surfactant Mixtures on Velocity of the Rising Bubbles. Colloids Surf. A Physicochem. Eng. Asp. 2014, 460, 361–368. [Google Scholar] [CrossRef]
- Su, H.C.; Liu, Y.L.; Tian, Z.L.; Zhang, S.; Zhang, A.M. Coupling between a Bubble and a Liquid-Liquid Interface in Viscous Flow. Int. J. Multiph. Flow 2023, 160, 104373. [Google Scholar] [CrossRef]
- Dukhin, S.S.; Miller, R.; Loglio, G. Physico-Chemical Hydrodynamics of Rising Bubble. Stud. Interface Sci. 1998, 6, 367–432. [Google Scholar] [CrossRef]
- Hartunian, R.A.; Sears, W.R. On the Instability of Small Gas Bubbles Moving Uniformly in Various Liquids. J. Fluid Mech. 1957, 3, 27–47. [Google Scholar] [CrossRef]
- Tsuge, H.; Hibino, S.I. The Onset Conditions of Oscillatory Motion of Single Gas Bubbles Rising in Various Liquids. J. Chem. Eng. Japan 1977, 10, 66–68. [Google Scholar] [CrossRef] [Green Version]
- Basařová, P.; Pišlová, J.; Mills, J.; Orvalho, S. Influence of Molecular Structure of Alcohol-Water Mixtures on Bubble Behaviour and Bubble Surface Mobility. Chem. Eng. Sci. 2018, 192, 74–84. [Google Scholar] [CrossRef]
- Duineveld, P.C. The Rise Velocity and Shape of Bubbles in Pure Water at High Reynolds Number. J. Fluid Mech. 1995, 292, 325–332. [Google Scholar] [CrossRef]
- Sam, A.; Gomez, C.O.; Finch, J.A. Axial Velocity Profiles of Single Bubbles in Water/Frother Solutions. Int. J. Miner. Process. 1996, 47, 177–196. [Google Scholar] [CrossRef]
- Zhang, Y.; McLaughlin, J.B.; Finch, J.A. Bubble Velocity Profile and Model of Surfactant Mass Transfer to Bubble Surface. Chem. Eng. Sci. 2001, 56, 6605–6616. [Google Scholar] [CrossRef]
- Zhang, Y.; Finch, J.A. A Note Om Single Bubble Motion in Srfactant Soltions. J. Fluid Mech. 2001, 429, 63–66. [Google Scholar] [CrossRef]
- Bel Fdhila, R.; Duineveld, P.C. The Effect of Surfactant on the Rise of a Spherical Bubble at High Reynolds and Peclet Numbers. Phys. Fluids 1996, 8, 310–321. [Google Scholar] [CrossRef]
- Zawala, J.; Krzan, M.; Krasowska, M.; Malysa, K. Inducement of Dynamic Adsorption Structures at Liquid/Gas Interface; Acceleration and Velocity of the Detaching Bubble. Sci. Conf. Surfactant Dispersed Syst. Theory nad Pract. 2005, 115–118. [Google Scholar]
- Krzan, M.; Malysa, K. Influence of Frother Concentration on Bubble Dimensions and Rising Velocities. Physicochem. Probl. Miner. Process. 2002, 36, 65–76. [Google Scholar]
- Kowalczuk, P.B.; Zawala, J.; Drzymala, J. Concentration at the Minimum Bubble Velocity (CMV) for Various Types of Flotation Frothers. Minerals 2017, 7, 118. [Google Scholar] [CrossRef] [Green Version]
- Krzan, M.; Malysa, K. Influence of Electrolyte Presence on Bubble Motion in Solutions of Sodium N-Alkyl Sulfates (C8, C10, C12). Physicochem. Probl. Miner. Process. 2012, 48, 49–62. [Google Scholar]
- Krzan, M. Influence of Solution PH and Electrolyte Presence on Bubble Velocity in Anionic Surfactant Solutions. Physicochem. Probl. Miner. Process. 2009, 43, 43–58. [Google Scholar]
- Kosior, D.; Zawala, J. Initial Degree of Detaching Bubble Adsorption Coverage and the Kinetics of Dynamic Adsorption Layer Formation. Phys. Chem. Chem. Phys. 2018, 20, 2403–2412. [Google Scholar] [CrossRef]
- Krzan, M.; Lunkenheimer, K.; Malysa, K. On the Influence of the Surfactant’s Polar Group on the Local and Terminal Velocities of Bubbles. Colloids Surf. A Physicochem. Eng. Asp. 2004, 250, 431–441. [Google Scholar] [CrossRef]
- Aoyama, S.; Hayashi, K.; Hosokawa, S.; Tomiyama, A. Shapes of Single Bubbles in Infinite Stagnant Liquids Contaminated with Surfactant. Exp. Therm. Fluid Sci. 2018, 96, 460–469. [Google Scholar] [CrossRef]
- Basařová, P.; Kryvel, Y.; Crha, J. Bubble Rise Velocity and Surface Mobility in Aqueous Solutions of Sodium Dodecyl Sulphate and N-Propanol. Minerals 2019, 9, 743. [Google Scholar] [CrossRef] [Green Version]
- Khattab, I.S.; Bandarkar, F.; Fakhree, M.A.A.; Jouyban, A. Density, Viscosity, and Surface Tension of Water+ethanol Mixtures from 293 to 323K. Korean J. Chem. Eng. 2012, 29, 812–817. [Google Scholar] [CrossRef]
- Chodzińska, A.; Zdziennicka, A.; Jańczuk, B. Volumetric and Surface Properties of Short Chain Alcohols in Aqueous Solution-Air Systems at 293 K. J. Solut. Chem. 2012, 41, 2226–2245. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, G.; Alvarez, E.; Navaza, J.M. Surface Tension of Alcohol + Water from 20 to 50 °C. J. Chem. Eng. Data 1995, 40, 611–614. [Google Scholar] [CrossRef]
- Llovell, F.; Vilaseca, O.; Jung, N.; Vega, L.F. Water+1-Alkanol Systems: Modeling the Phase, Interface and Viscosity Properties. Fluid Phase Equilib. 2013, 360, 367–378. [Google Scholar] [CrossRef]
- Johnson, D.O.; Stebe, K.J. Experimental Confirmation of the Oscillating Bubble Technique with Comparison to the Pendant Bubble Method: The Adsorption Dynamics of 1-Decanol. J. Colloid Interface Sci. 1996, 182, 526–538. [Google Scholar] [CrossRef]
- Aksenenko, E.V.; Fainerman, V.B.; Miller, R. Dynamics of Surfactant Adsorption from Solution Considering Aggregation within the Adsorption Layer. J. Phys. Chem. B 1998, 102, 6025–6028. [Google Scholar] [CrossRef]
- Krzan, M.; Lunkenheimer, K.; Malysa, K. Pulsation and Bouncing of a Bubble Prior to Rupture and/or Foam Film Formation. Langmuir 2003, 19, 6586–6589. [Google Scholar] [CrossRef]
- Warszynski, P.; Wantke, K.D.; Fruhner, H. Surface Elasticity of Oscillating Spherical Interfaces. Colloids Surf. A Physicochem. Eng. Asp. 1998, 139, 137–153. [Google Scholar] [CrossRef]
- Jachimska, B.; Warszynski, P.; Malysa, K. Influence of Adsorption Kinetics and Bubble Motion on Stability of the Foam Films Formed at N-Octanol, n-Hexanol and n-Butanol Solution Surface. Colloids Surf. A Physicochem. Eng. Asp. 2001, 192, 177–193. [Google Scholar] [CrossRef]
- Dabestani, M.; Yeganehzad, S.; Krzan, M.; Miller, R. Characterisation of Egg White Adsorption Layers under Equilibrium and Dynamic Conditions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 29–35. [Google Scholar] [CrossRef]
- Lunkenheimer, K.; Wienskol, G.; Prosser, A.J. Automated High-Performance Purification of Surfactant Solutions: Study of Convective-Enhanced Adsorption. Langmuir 2004, 20, 5738–5744. [Google Scholar] [CrossRef] [PubMed]
Conc. (M) | Time (s) | θdetach. (%) | θequil. (%) | Conc. (M) | Time (s) | θdetach. (%) | θequil. (%) |
---|---|---|---|---|---|---|---|
5 × 10−5 | 0.5 | 0.66 | 0.74 | 5 × 10−3 | 0.5 | 65.2 | 69.2 |
5 × 10−5 | 1.3 | 0.69 | 0.74 | 5 × 10−3 | 1.2 | 66.7 | 69.2 |
5 × 10−5 | 2.6 | 0.71 | 0.74 | 5 × 10−3 | 2.9 | 67.6 | 69.2 |
5 × 10−5 | 5 | 0.71 | 0.74 | 5 × 10−3 | 4.8 | 68.0 | 69.2 |
5 × 10−5 | 10.2 | 0.72 | 0.74 | 5 × 10−3 | 11.8 | 68.4 | 69.2 |
5 × 10−5 | 180 | 0.73 | 0.74 | 5 × 10−3 | 180 | 69.0 | 69.2 |
Conc. (M) | Time (s) | θdetach. (%) | θequil. (%) | Conc. (M) | Time (s) | θdetach. (%) | θequil. (%) |
---|---|---|---|---|---|---|---|
1 × 10−5 | 0.45 | 0.55 | 1.1 | 9 × 10−5 | 0.45 | 5.1 | 11.6 |
1 × 10−5 | 1.2 | 0.68 | 1.1 | 9 × 10−5 | 1.2 | 6.5 | 11.6 |
1 × 10−5 | 3.6 | 0.81 | 1.1 | 9 × 10−5 | 2.9 | 7.7 | 11.6 |
1 × 10−5 | 11 | 0.91 | 1.1 | 9 × 10−5 | 4.8 | 8.3 | 11.6 |
1 × 10−5 | 180 | 1.03 | 1.1 | 9 × 10−5 | 180 | 9.2 | 11.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzan, M.; Chattopadhyay, P.; Orvalho, S.; Zednikova, M. Effects of N-Alkanol Adsorption on Bubble Acceleration and Local Velocities in Solutions of the Homologous Series from Ethanol to N-Decanol. Materials 2023, 16, 2125. https://doi.org/10.3390/ma16052125
Krzan M, Chattopadhyay P, Orvalho S, Zednikova M. Effects of N-Alkanol Adsorption on Bubble Acceleration and Local Velocities in Solutions of the Homologous Series from Ethanol to N-Decanol. Materials. 2023; 16(5):2125. https://doi.org/10.3390/ma16052125
Chicago/Turabian StyleKrzan, Marcel, Pradipta Chattopadhyay, Sandra Orvalho, and Maria Zednikova. 2023. "Effects of N-Alkanol Adsorption on Bubble Acceleration and Local Velocities in Solutions of the Homologous Series from Ethanol to N-Decanol" Materials 16, no. 5: 2125. https://doi.org/10.3390/ma16052125
APA StyleKrzan, M., Chattopadhyay, P., Orvalho, S., & Zednikova, M. (2023). Effects of N-Alkanol Adsorption on Bubble Acceleration and Local Velocities in Solutions of the Homologous Series from Ethanol to N-Decanol. Materials, 16(5), 2125. https://doi.org/10.3390/ma16052125