Archaeometallurgical Analysis of the Provincial Silver Coinage of Judah: More on the Chaîne Opératoire of the Minting Process
Abstract
:1. Introduction
2. Technological Background to Research
3. Experimental Methods and Tests
- (a)
- Visual testing (VT) inspection of the coins was performed in order to examine their general preservation condition and locate the better preserved areas of each coin.
- (b)
- A handheld X-ray fluorescence (XRF) Oxford X-MET8000 (Oxford Instruments, Abingdon, UK) was employed to examine the obverse and reverse of each coin of group Type 5 O1/R1, O1/R2, and O1/R4 to determine the elemental compositions of the surface. The XRF instrument was combined with a Silicon Drift Detector equipped with a 45 kV Rh Target X-ray tube. Each measurement was performed for 30 s with a detected spot diameter of 5 mm. Oxygen could not be detected with this XRF tool according to instrumental limitation.
- (c)
- A multi-focal digital light microscope (LM) (HIROX RH-2000, Hirox, Limonest, France) with high intensity LED lighting (5700 K color temperature) was used to inspect the general preservation of the surface and to detect microscopic discontinuities and defects. The coins were examined with an improved light sensitivity sensor at high resolution HD (1920 × 1200) with a multi-focus system combining many levels of light intensity and an integrated stepping motor, as well as powerful 3D software.
- (d)
- Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) examination was performed with environmental SEM in high vacuum mode and an Everhart–Thornley secondary electron (SE) detector. Both secondary electron (SE) and back-scattered electron (BSE) modes were used. The coins’ surface composition (Supplementary Materials, Tables S1–S8) was analyzed by EDS using a Si(Li) liquid-cooled Oxford X-ray detector, calibrated with standard samples from the manufacturer, and providing measurements with a first approximation error of 1% [28]. SEM-EDS analysis accesses only a few micrometers beneath the surface of the analyzed metal; however, it provides very precise information on the morphology of the inspected area [29]. Before SEM-EDS examination, the coins’ surfaces were cleaned with ethanol and dried. In order to measure the coins’ alloy composition, only bright metal regions according to BSE mode were inspected. An example of SEM-EDS spectra of a typical coin’s surface is shown in Supplementary Materials, Figure S1. Different scan areas were examined using EDS between 20 µm × 20 µm and 800 µm × 800 µm. An average composition was then calculated by analyzing each coin using 6–8 measurements from different parts of each coin (both obverse and reverse sides were examined) to collect statistical data on each coin (reliable elemental distribution, average composition values and standard deviation), and then the results were normalized to 100 weight percentage (wt%). The alloy composition was calculated after omitting the peaks of oxides, corrosion products, and soil elements. In order to examine if the surface analysis represented the bulk alloy composition, seven Yehud silver coins were locally ground in different areas with 240–320 silicon carbide grit papers to reveal their bulk metal composition. The examined coins were IAA 153976 and IMJ 27424 (Type 5 O1/R1), IAA 101006 and IAA 154383 (Type 5 O1/R2), IMJ 27383 (Type 16 O2/R2), Trans-Jordan 11 (Type 24 O1/R2), and IMJ 34591 (Type 31 O1/R1). The composition of these coins was detected in several areas before (Supplementary Materials, Tables S1, S2 and S6–S8) and after locally grinding their surface (Supplementary Materials, Table S9).
4. Results
4.1. Yehud Gerah Type 5 O1/R1
4.2. Yehud Gerah Type 5 O1/R2
4.3. Yehud Gerah Type 5 O1/R3 Coins
4.4. Yehud Gerah Type 5 O1/R4
4.5. Yehud Gerah Type 5 O1/R5
4.6. Yehud Half Gerah Type 16 O2/R2
4.7. Yehud Attic Standard Quarter Obol Type 24 O1/R2
4.8. Yehud Attic Standard Hemiobol Type 31 O1/R1
4.9. Chemical Analysis of the Bulk of the Locally Ground Yehud Coins
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gitler, H.; Goren, Y.; Konuk, K.; Tal, O.; Peter van Alfen, P.; Weisburd, D. XRF analysis of several groups of electrum coins. In White Gold, Studies in Early Electrum Coinage; van Alfen, P., Wartenberg, U., Fischer-Bossert, W., Gitler, H., Konuk, K., Lorber, C.C., Eds.; American Numismatic Society: New York, NY, USA, 2020; pp. 379–422. [Google Scholar]
- Gitler, H.; Lorber, C.; Fontanille, J.-P. The Yehud Coinage: A Study and Die Classification of the Provincial Silver Coinage of Judah; Israel Numismatic Society: Jerusalem, Israel, 2023. [Google Scholar]
- Fontanille, J.-P. Extreme deterioration and damage on Yehud coin dies. Isr. Numis. Res. 2008, 3, 29–44. [Google Scholar]
- Gitler, H. A Hoard of Persian Yehud coins from the environs of Ramallah. Numisma 2006, 250, 319–324. [Google Scholar]
- Brocchieri, J.; Vitale, R.; Sabbarese, C. Characterization of the incuse coins of the Museo Campano in Capua (Southern Italy) by X-ray fluorescence and numismatic analysis. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 479, 93–101. [Google Scholar] [CrossRef]
- Fabrizi, L.; Di Turo, F.; Medeghini, L.; Di Fazio, M.; Catalli, F.; De Vito, C. The application of non-destructive techniques for the study of corrosion patinas of ten Roman silver coins: The case of the medieval Grosso Romanino. Microchem. J. 2018, 145, 419–427. [Google Scholar] [CrossRef]
- Hrnjić, M.; Hagen-Peter, G.A.; Birch, T.; Barfod, G.H.; Sindbæk, S.M.; Lesher, C.E. Non-destructive identification of surface enrichment and trace element fractionation in ancient silver coins. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 478, 11–20. [Google Scholar] [CrossRef]
- Marussi, G.; Crosera, M.; Prenesti, E.; Cristofori, D.; Callegher, B.; Adami, G. A Multi-Analytical Approach on Silver-Copper Coins of the Roman Empire to Elucidate the Economy of the 3rd Century A.D. Molecules 2022, 27, 6903. [Google Scholar] [CrossRef]
- Zlateva, B.; Lesigyarski, D.; Varbanov, V.; Bonev, V.; Iliev, I. Archaeometrical investigation of Roman silver coins from Bulgaria. Mediterr. Archaeol. Archaeom. 2022, 22, 23–34. [Google Scholar]
- L’Héritier, M.; Baron, S.; Cassayre, L.; Téreygeol, F. Bismuth behavior during ancient processes of silver–lead production. J. Archaeol. Sci. 2015, 57, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Oudbashi, O.; Wanhill, R. Long-term embrittlement of ancient copper and silver alloys. Heritage 2021, 4, 2287–2319. [Google Scholar] [CrossRef]
- Mortazavi, M.; Naghavi, S.; Khanjari, R.; Agha-Aligol, D. Metallurgical study on some Sasanian silver coins in Sistan Museum. Archaeol. Anthropol. Sci. 2018, 10, 1831–1840. [Google Scholar] [CrossRef]
- Nerantzis, N. Pre-industrial iron smelting and silver extraction in North-Eastern Greece: An archaeometallurgical approach. Archaeometry 2016, 58, 624–641. [Google Scholar] [CrossRef]
- Vogl, J.; Paz, B.; Völling, E. On the ore provenance of the Trojan silver artefacts. Archaeol. Anthropol. Sci. 2019, 11, 3267–3277. [Google Scholar] [CrossRef]
- Boev, I. Chemical composition of the silver tetradrachms from the locality Isar Marvinci determined with the application of the SEM-EDS method. Nat. Resour. Technol. 2021, 15, 43–47. [Google Scholar]
- Liu, S.; Li, Z.; Zhou, Y.; Li, R.; Xie, Z.; Liu, C.; Hu, G.; Hu, D. Optimizing the thermal treatment for restoration of brittle archaeological silver artifacts. Herit. Sci. 2022, 10, 21. [Google Scholar] [CrossRef]
- Tayyari, J.; Emami, M.; Agha-Aligol, D. Identification of microstructure and chemical composition of a silver object from Shahrak-e Firouzeh, Nishapur, Iran (~2nd millennium BC). Surf. Interfaces 2021, 25, 101168. [Google Scholar] [CrossRef]
- Alinezhad, Z.; Dehpahlavan, M.; Rashti, M.L.; Oliaiy, P. Elemental analysis of Seleucid’s silver coins from Hamadan Museum by PIXE technique. Radiat. Phys. Chem. 2019, 158, 165–174. [Google Scholar] [CrossRef]
- Ashkenazi, D.; Gitler, H.; Stern, A.; Tal, O. Metallurgical investigation on fourth century BCE silver jewellery of two hoards from Samaria. Sci. Rep. 2017, 7, 40659. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, D.; Gitler, H.; Stern, A.; Tal, O. Archaeometallurgical characterization and manufacturing technologies of fourth century BCE silver jewelry: The Samaria and Nablus Hoards as test case. Metallogr. Microstruct. Anal. 2018, 7, 387–413. [Google Scholar] [CrossRef]
- Davis, G.; Gore, D.B.; Sheedy, K.A.; Albarède, F. Separating silver sources of Archaic Athenian coinage by comprehensive compositional analyses. J. Archaeol. Sci. 2020, 114, 105068. [Google Scholar] [CrossRef]
- Doménech-Carbó, M.T.; Di Turo, F.; Montoya, N.; Catalli, F.; Doménech-Carbó, A.; De Vito, C. FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes. Sci. Rep. 2018, 8, 10676. [Google Scholar] [CrossRef] [Green Version]
- Bakirov, B.A.; Kichanov, S.E.; Khramchenkova, R.K.; Belushkin, A.V.; Kozlenko, D.P.; Sitdikov, A.G. Studies of coins of medieval Volga Bulgaria by neutron diffraction and tomography. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2020, 14, 376–381. [Google Scholar] [CrossRef]
- Westner, K.J.; Birch, T.; Kemmers, F.; Klein, S.; Höfer, H.E.; Seitz, H.M. Rome’s rise to power. Geochemical analysis of silver coinage from the Western Mediterranean (fourth to second centuries BCE). Archaeometry 2000, 62, 577–592. [Google Scholar] [CrossRef] [Green Version]
- Di Fazio, M.; Di Turo, F.; Medeghini, L.; Fabrizi, L.; Catalli, F. New insights on medieval Provisini silver coins by a combination of nondestructive and micro-invasive techniques. Microchem. J. 2019, 144, 309–318. [Google Scholar] [CrossRef]
- Hampshire, B.V.; Butcher, K.; Ishida, K.; Green, G.; Paul, D.M.; Hillier, A.D. Using negative muons as a probe for depth profiling silver Roman coinage. Heritage 2019, 2, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Feliu, I.; Moreno-Suárez, A.I.; Gómez-Tubío, B.; Ager, F.J.; Respaldiza, M.A.; García-Dils, S.; Rodríguez-Gutiérrez, O. A comparative study of PIXE and XRF corrected by Gamma-ray Transmission for the non-destructive characterization of a gilded roman railing. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1920–1923. [Google Scholar] [CrossRef]
- Newbury, D.E.; Ritchie, N.W.M. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? Scanning 2013, 35, 141–168. [Google Scholar] [CrossRef]
- Debernardi, P.; Corsi, J.; Borghi, A.; Cossio, R.; Gambino, F.; Ghignone, S.; Scherillo, A.; Re, A.; Giudice, A.L. Some insight into “bronze quadrigati”: A multi-analytical approach. Archaeol. Anthropol. Sci. 2022, 14, 133. [Google Scholar] [CrossRef]
- Pitarch, A.; Queralt, I. Energy dispersive X-ray fluorescence analysis of ancient coins: The case of Greek silver drachmae from the Emporion site in Spain. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1682–1685. [Google Scholar] [CrossRef]
- Pitarch, A.; Queralt, I.; Alvarez-Perez, A. Analysis of Catalonian silver coins from the Spanish war of independence period (1808–1814) by energy dispersive X-ray fluorescence. Nucl. Instrum. Methods Phys. Res. Sect. B 2011, 269, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Feliu, I.; Scrivano, S.; Gómez-Tubıó, B.; Ager, F.J.; de la Bandera, M.L.; Respaldiza, M.A.; Navarro, A.D.; San Martín, C. Technical characterization of the necklace of El Carambolo hoard (Camas, Seville, Spain). Microchem. J. 2018, 139, 401–409. [Google Scholar] [CrossRef]
- Pięta, E.; Lekki, J.; del Hoyo-Meléndez, J.M.; Paluszkiewicz, C.; Nowakowski, M.; Matosz, M.; Kwiatek, W.M. Surface characterization of medieval silver coins minted by the early Piasts: FTIR mapping and SEM/EDX studies. Surf. Interface Anal. 2018, 50, 78–86. [Google Scholar] [CrossRef]
- Gordus, A.A. Neutron activation analysis of archaeological artefacts. Philos. Trans. R. Soc. Lond. A 1970, 269, 165–174. [Google Scholar]
- Ashworth, M.J.; Abeles, T.P. Neutron activation analysis and archaeology. Nature 1966, 210, 9–11. [Google Scholar] [CrossRef]
- Bolewski, A.; Matosz, M.; Pohorecki, W.; del Hoyo-Meléndez, J.M. Comparison of neutron activation analysis (NAA) and energy dispersive X-ray fluorescence (XRF) spectrometry for the non-destructive analysis of coins minted under the early Piast dynasty. Radiat. Phys. Chem. 2020, 171, 108699. [Google Scholar] [CrossRef]
- Das, D.D.; Sharma, N.; Chawla, P.A. Neutron activation analysis: An excellent nondestructive analytical technique for trace metal analysis. Crit. Rev. Anal. Chem. 2023, 1–17. [Google Scholar] [CrossRef]
- Szentmiklósi, L.; Maróti, B.; Kis, Z. Prompt-gamma activation analysis and neutron imaging of layered metal structures. Nucl. Instrum. Methods Phys. Res. A 2021, 1011, 165589. [Google Scholar] [CrossRef]
- Kasztovszky, Z.; Panczyk, E.; Fedorowicz, W.; Révay, Z.; Sartowska, B. Comparative archaeometrical study of Roman silver coins by prompt gamma activation analysis and SEM-EDX. J. Radioanal. Nucl. Chem. 2005, 265, 193–199. [Google Scholar] [CrossRef]
- Biswas, S.; Gerchow, L.; Luetkens, H.; Prokscha, T.; Antognini, A.; Berger, N.; Cocolios, T.E.; Dressler, R.; Indelicato, P.; Jungmann, K.; et al. Characterization of a continuous muon source for the non-destructive and depth-selective elemental composition analysis by muon induced X- and gamma-rays. Appl. Sci. 2022, 12, 2541. [Google Scholar] [CrossRef]
- Moreno-Suárez, A.I.; Ager, F.J.; Scrivano, S.; Ortega-Feliu, I.; Gómez-Tubío, B.; Respaldiza, M.A. First attempt to obtain the bulk composition of ancient silver–copper coins by using XRF and GRT. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 358, 93–97. [Google Scholar] [CrossRef]
- Beck, L.; Bosonnet, S.; Réveillon, S.; Eliot, D.; Pilon, F.J.N.I. Silver surface enrichment of silver–copper alloys: A limitation for the analysis of ancient silver coins by surface techniques. Nucl. Instrum. Methods Phys. Res. Sect. B 2004, 226, 153–162. [Google Scholar] [CrossRef]
- Oudbashi, O.; Shekofteh, A. Chemical and microstructural analysis of some Achaemenian silver alloy artefacts from Hamedan, western Iran. Period. Mineral. 2015, 84, 419–434. [Google Scholar]
- Flament, C.; Marchetti, P. Analysis of ancient silver coins. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 226, 179–184. [Google Scholar] [CrossRef]
- Tate, J. Some problems in analysing museum material by nondestructive surface sensitive techniques. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1986, 14, 20–23. [Google Scholar] [CrossRef]
Coin Types | No. of Examined Items | No. of Tests Performed by SEM-EDS | Average Cu (wt%) Content in the Ag-Cu Alloy |
---|---|---|---|
Yehud gerah Type 5 O1/R1 coins | 7 | 42 | 1.5 ± 2.0 |
Yehud gerah Type 5 O1/R2 coins | 8 | 53 | 3.6 ± 2.5 |
Yehud gerah Type 5 O1/R3 coins | 4 | 31 | 2.4 ± 3.6 |
Yehud gerah Type 5 O1/R4 coins | 7 | 48 | 0.9 ± 1.2 |
Yehud gerah Type 5 O1/R5 coins | 2 | 14 | 0.3 ± 0.8 |
Yehud gerah Type 5 coins with exceptional composition | 4 | 28 | 20.7 ± 19.3 |
Yehud half gerah Type 16 O2/R2 coins | 9 | 40 | 0.1 ± 0.4 |
Yehud quarter obol Type 24 O1/R2 coins | 3 | 20 | 0.0 ± 0.0 |
Yehud hemiobol Type 31 O1/R1 coins | 6 | 44 | 1.7 ± 3.7 |
Late addition to the Yehud corpus [2]: 270–271, Figure VIII, 84–85 | 3 | 22 | 0.4 ± 0.8 |
Coins from the Samaria and Nablus Hoards [19] | 80 | 160 | 4.1 ± 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, M.; Ashkenazi, D.; Gitler, H.; Tal, O. Archaeometallurgical Analysis of the Provincial Silver Coinage of Judah: More on the Chaîne Opératoire of the Minting Process. Materials 2023, 16, 2200. https://doi.org/10.3390/ma16062200
Cohen M, Ashkenazi D, Gitler H, Tal O. Archaeometallurgical Analysis of the Provincial Silver Coinage of Judah: More on the Chaîne Opératoire of the Minting Process. Materials. 2023; 16(6):2200. https://doi.org/10.3390/ma16062200
Chicago/Turabian StyleCohen, Maayan, Dana Ashkenazi, Haim Gitler, and Oren Tal. 2023. "Archaeometallurgical Analysis of the Provincial Silver Coinage of Judah: More on the Chaîne Opératoire of the Minting Process" Materials 16, no. 6: 2200. https://doi.org/10.3390/ma16062200
APA StyleCohen, M., Ashkenazi, D., Gitler, H., & Tal, O. (2023). Archaeometallurgical Analysis of the Provincial Silver Coinage of Judah: More on the Chaîne Opératoire of the Minting Process. Materials, 16(6), 2200. https://doi.org/10.3390/ma16062200