Mangiferin-Enriched Mn–Hydroxyapatite Coupled with β-TCP Scaffolds Simultaneously Exhibit Osteogenicity and Anti-Bacterial Efficacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Mn-BCP Porous Scaffolds
2.2. Characterization of the Scaffolds
2.2.1. X-ray Diffraction
2.2.2. Contact Angle Measurement
2.2.3. Water Uptake Capability
2.2.4. Mechanical Property Measurement
2.2.5. Biodegradation in SBF
2.2.6. Release of Mangiferin during In Vitro Degradation
2.2.7. Ion Release
2.2.8. In Vitro Toxicity Testing Using MTT Assay
2.2.9. Microscopic Observation and Immunostaining
2.2.10. Osteogenic Gene Expression
2.2.11. Alkaline Phosphatase (ALP) Assay
2.2.12. Bacterial Viability Test
2.3. Statistical Analysis
3. Results
3.1. X-ray Diffraction
3.2. Contact Angle Measurement
3.3. Swelling Ratio
3.4. Mechanical Property of the Scaffold
3.5. Degradation
3.6. In Vitro Release of Mangiferin from Scaffolds
3.7. Ion Release
3.8. MTT Assay
3.9. SEM and CLSM Observation
3.10. Osteogenic Gene Expression
3.11. ALP Activity
3.12. Bacterial Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rautray, T.R.; Narayanan, R.; Kim, K.H. Ion implantation of titanium based biomaterials. Prog. Mater. Sci. 2011, 56, 1137–1177. [Google Scholar] [CrossRef] [Green Version]
- Swain, S.; Rautray, T.R. Effect of surface roughness on titanium medical implants. In Nanostructured Materials and Their Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 55–80. [Google Scholar]
- Swain, S.; Mishra, R.D.K.; You, C.K.; Rautray, T.R. TiO2 nanotubes synthesised on Ti-6Al-4V ELI exhibits enhanced osteogenic activity: A potential next-generation material to be used as medical implants. Mater. Technol. 2021, 36, 393–399. [Google Scholar] [CrossRef]
- Behera, D.R.; Nayak, P.; Rautray, T.R. Phosphatidylethanolamine impregnated Zn-HA coated on titanium for enhanced bone growth with antibacterial properties. J. King Saud Univ. Sci. 2020, 32, 848–852. [Google Scholar] [CrossRef]
- Swain, S.; Padhy, R.N.; Rautray, T.R. Electrically stimulated hydroxyapatite–barium titanate composites demonstrate immunocompatibility in vitro. J. Korean Ceram. Soc. 2020, 57, 495–502. [Google Scholar] [CrossRef]
- Abdurrahim, T.; Sopyan, I. Recent progress on the development of porous bioactive calcium phosphate for biomedical applications. Recent Pat. Biomed. Eng. 2008, 1, 213–229. [Google Scholar]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roseti, L.; Paris, V. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater. Sci. Eng. C 2017, 78, 1246–1262. [Google Scholar] [CrossRef]
- Kim, H.; Camata, R.P.; Vohra, Y.K.; Lacefield, W.R. Control of phase composition in hydroxyapatite/tetracalcium phosphate biphasic thin coatings for biomedical applications. J. Mater. Sci. Mater. Med. 2005, 16, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Huang, C.; Wang, J.; Zou, B. Development of a novel aqueous hydroxyapatite suspension for stereolithography applied to bone tissue engineering. Ceram. Int. 2019, 45, 3902–3909. [Google Scholar] [CrossRef]
- Tas, A.C.; Korkusuz, F.; Timucin, M.; Akkas, N. An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics. J. Mater. Sci. Med. 1997, 8, 91–96. [Google Scholar]
- Hong, S.Y.; Tran, T.V.T.; Kang, H.J.; Tripathi, G.; Lee, B.T.; Bae, S.H. Synthesis and characterization of biphasic calcium phosphate laden thiolated hyaluronic acid hydrogel based scaffold: Physical and in-vitro biocompatibility evaluations. J. Biomater. Sci. Polym. Ed. 2021, 32, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Praharaj, R.; Mishra, S.; Rautray, T.R. The structural and bioactive behaviour of strontium-doped titanium dioxide nanorods. J. Korean Ceram. Soc. 2020, 57, 271–280. [Google Scholar] [CrossRef]
- Keating, J.F.; Simpson, A.H.; Robinson, C.M. The management of fractures with bone loss. J. Bone Jt. Surg. 2005, 87, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawabata, K.; Hironobu, S.; Tamoyuki, Y. Local environment analysis of Mn ions in β-tricalcium phosphate. J. Ceram. Soc. Jpn. 2008, 116, 108–110. [Google Scholar] [CrossRef] [Green Version]
- Acchar, W.; Ramalho, E. Effect of MnO2 addition on sintering behavior of tricalcium phosphate: Preliminary results. Mater. Sci. Eng. C 2008, 28, 248–252. [Google Scholar] [CrossRef]
- Mayer, I.; Cuisinier, F.J.G.; Popov, I.; Schleich, Y.; Gdalya, S.; Burghaus, O.; Reinen, D. Phase Relations Between β-Tricalcium Phosphate and Hydroxyapatite with Manganese (II): Structural and Spectroscopic Properties. Eur. J. Inorg. Chem. 2006, 7, 1460–1465. [Google Scholar] [CrossRef]
- Luo, Y.; Fu, C.; Wang, Z.; Zhang, Z.; Wang, H. Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl-2 and Bax pathway. Mol. Med. Rep. 2015, 12, 7132–7138. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, H.S.; Candelario-Jalil, E.; Oliviera, A.C.D.; Olajide, O.A.; Martinez-Sanchez, G.; Fiebich, B.L. Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells. Arch. Biochem. Biophys. 2008, 477, 253–258. [Google Scholar] [CrossRef]
- Ang, E.; Liu, Q.; Qi, M.; Liu, H.G.; Yang, X.; Chen, H.; Zheng, M.H.; Xu, J. Mangiferin attenuates osteoclastogenesis, bone resorption, and RANKL-induced activation of NF-κB and ERK. J. Cell. Biochem. 2011, 112, 89–97. [Google Scholar] [CrossRef]
- Swain, S.; Mishra, S.; Patra, A.; Praharaj, R.; Rautray, T.R. Dual action of polarised zinc hydroxyapatite-guar gum composite as a next generation bone filler material. Mater. Today Proc. 2022, 62, 6125–6130. [Google Scholar] [CrossRef]
- Mohapatra, B.; Rautray, T.R. Facile fabrication of Luffa cylindrica-assisted 3D hydroxyapatite scaffolds. Bioinspired Biomim. Nanobiomater. 2021, 10, 37–44. [Google Scholar] [CrossRef]
- Mohapatra, B.; Rautray, T.R. Strontium-substituted biphasic calcium phosphate scaffold for orthopedic applications. J. Korean Ceram. Soc. 2020, 57, 392–400. [Google Scholar] [CrossRef]
- Mishra, S.; Rautray, T.R. Fabrication of Xanthan gum-assisted hydroxyapatite microspheres for bone regeneration. Mater. Technol. 2020, 35, 364–371. [Google Scholar] [CrossRef]
- Lavik, E.B.; Klassen, H.; Warfvinge, K.; Langer, R.; Young, M.J. Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors. Biomaterials 2005, 26, 3187–3196. [Google Scholar] [CrossRef]
- Rautray, T.R.; Vijayan, V.; Ashok, M.; Kennedy, J.V.; Jayanthi, V.; Ibrarullah, M.D.; Panigrahi, S. Pixe analysis of gallstones. Int. J. PIXE 2005, 15, 147–152. [Google Scholar] [CrossRef]
- Swain, S.; Ong, J.L.; Narayanan, R.; Rautray, T.R. Ti-9Mn β-type alloy exhibits better osteogenicity than Ti-15Mn alloy in vitro. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 2154–2161. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, I.; Swain, S.; Koduru, J.R.; Rautray, T.R. Electrically Polarized Withaferin A and Alginate-Incorporated Biphasic Calcium Phosphate Microspheres Exhibit Osteogenicity and Antibacterial Activity In Vitro. Molecules 2022, 28, 86. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.; Bowen, C.; Rautray, T.R. Dual response of osteoblast activity and antibacterial properties of polarized strontium substituted hydroxyapatite—Barium strontium titanate composites with controlled strontium substitution. J. Biomed. Mater. Res. Part A 2021, 109, 2027–2035. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.; Rautray, T.R. Estimation of trace elements, antioxidants, and antibacterial agents of regularly consumed Indian medicinal plants. Biol. Trace Elem. Res. 2021, 199, 1185–1193. [Google Scholar] [CrossRef]
- Rivera, D.G.; Hernández, I.; Merino, N.; Luque, Y.; Álvarez, A.; Martin, Y. Mangifera indica L. extract (Vimang) and mangiferin reduce the airway inflammation and Th2 cytokines in murine model of allergic asthma. J. Pharm. Pharmacol. 2011, 63, 1336–1345. [Google Scholar] [CrossRef]
- Li, H.; Liao, H.; Bao, C.; Xiao, Y.L.; Wang, Q. Preparation and Evaluations of Mangiferin-Loaded PLGA Scaffolds for Alveolar Bone Repair Treatment Under the Diabetic Condition. AAPS PharmSciTech 2017, 18, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, H.; Chen, J.; Wang, F.; Wang, S.; Zhou, Q.; Ying, J.; Huang, S.; Wang, P.; Yuan, F. ACY-1215, a HDAC6 inhibitor, decreases the dexamethasone-induced suppression of osteogenesis in MC3T3-E1 cells. Mol. Med. Rep. 2020, 22, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Ventura, J.M.G.; Ferreira. Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: An X-ray diffraction study. Ceram. Int. 2007, 33, 637–641. [Google Scholar] [CrossRef]
- Suitch, P.; Lacout, J.L.; Hewat, A. The structural location and role of Mn2+ partially substituted for Ca2+ in fluorapatite. Acta Crystallogr. Sect. B Struct. Sci. 1985, 41, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Swain, S.; Patra, A.; Kumari, S.; Praharaj, R.; Mishra, S.; Rautray, T.R. Corona poled gelatin-Magnesium hydroxyapatite composite demonstrates osteogenicity. Mater. Today Proc. 2022, 62, 6131–6135. [Google Scholar] [CrossRef]
- Bueno, V.B.; Bentini, R.; Catalani, L.H.; Petri, D.F.S. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr. Polym. 2013, 92, 1091–1099. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.J.; Park, T.G. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J. Biomed. Mater. Res. 2001, 55, 401–408. [Google Scholar] [CrossRef]
- Praharaj, R.; Mishra, S.; Misra, R.D.K.; Rautray, T.R. Biocompatibility and adhesion response of magnesium-hydroxyapatite/strontium-titania (Mg-HAp/Sr-TiO2) bilayer coating on titanium. Mater. Technol. 2022, 37, 230–239. [Google Scholar] [CrossRef]
- Sarita, P.; Raju, G.J.; Kumar, M.R.; Naidu, B.G.; Rautray, T.R.; Reddy, S.B. Analysis of trace elements in blood sera of breast cancer patients by particle induced X-ray emission. J. Radioanal. Nucl. Chem. 2012, 294, 355–361. [Google Scholar] [CrossRef]
- Titushkin, I.; Cho, M. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys. J. 2007, 93, 3693–3702. [Google Scholar] [CrossRef] [Green Version]
- Byrne, E.M.; Ferrell, E.; McMohan, L.A.; Haugh, M.G.; O’Brien, F.J.; Campbell, V.A.; Prendergast, P.J.; O’Cornnell, B.C. Gene expression by marrow stromal cells in a porous collagen–glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. J. Mater. Sci. Mater. Med. 2008, 19, 3455–3463. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Luo, J.; Xia, L.; Chen, Y.; Song, S. CML cell line K562 cell apoptosis induced by mangiferin. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2004, 12, 590–594. [Google Scholar] [PubMed]
- Swain, S.; Padhy, R.N.; Rautray, T.R. Polarized piezoelectric bioceramic composites exhibit antibacterial activity. Mater. Chem. Phys. 2020, 239, 122002. [Google Scholar] [CrossRef]
Gene | Forward Primer Sequence (5′–3′) | Reverse Primer Sequence (5′–3′) |
---|---|---|
RUNX2 | GGATTCTAAGCAAGGCATGG | ATGGGGAAATGTTTGCAATG |
COL1A1 | CCTCCCCGTGACTGTAGTGT | GAGACCCTGTAGGTGGGAAA |
OCN | CTCTGCTCCACAGCCTTTGT | CCTCCTCTCCCTACACATGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swain, S.; Koduru, J.R.; Rautray, T.R. Mangiferin-Enriched Mn–Hydroxyapatite Coupled with β-TCP Scaffolds Simultaneously Exhibit Osteogenicity and Anti-Bacterial Efficacy. Materials 2023, 16, 2206. https://doi.org/10.3390/ma16062206
Swain S, Koduru JR, Rautray TR. Mangiferin-Enriched Mn–Hydroxyapatite Coupled with β-TCP Scaffolds Simultaneously Exhibit Osteogenicity and Anti-Bacterial Efficacy. Materials. 2023; 16(6):2206. https://doi.org/10.3390/ma16062206
Chicago/Turabian StyleSwain, Subhasmita, Janardhan Reddy Koduru, and Tapash Ranjan Rautray. 2023. "Mangiferin-Enriched Mn–Hydroxyapatite Coupled with β-TCP Scaffolds Simultaneously Exhibit Osteogenicity and Anti-Bacterial Efficacy" Materials 16, no. 6: 2206. https://doi.org/10.3390/ma16062206
APA StyleSwain, S., Koduru, J. R., & Rautray, T. R. (2023). Mangiferin-Enriched Mn–Hydroxyapatite Coupled with β-TCP Scaffolds Simultaneously Exhibit Osteogenicity and Anti-Bacterial Efficacy. Materials, 16(6), 2206. https://doi.org/10.3390/ma16062206