Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molas, G.; Nowak, E. Advances in Emerging Memory Technologies: From Data Storage to Artificial Intelligence. Appl. Sci. 2021, 11, 11254. [Google Scholar] [CrossRef]
- Ishimaru, K. Future of Non-Volatile Memory-From Storage to Computing-. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 1.3.1–1.3.6. [Google Scholar] [CrossRef]
- Yang, J.Q.; Zhou, T.; Han, S.T. Functional Applications of Future Data Storage Devices. Adv. Electron. Mater. 2021, 7, 2001181. [Google Scholar] [CrossRef]
- Wulf, W.A.; Mckee, S.A. Hitting the Memory Wall: Implications of the Obvious. Appear. Comput. Archit. News 1995, 23, 20–24. [Google Scholar] [CrossRef]
- Cristal, A.; Santana, O.J.; Cazorla, F.; Galluzzi, M.; Ramirez, T.; Pericas, M.; Valero, M. Kilo-instruction processors: Overcoming the memory wall. IEEE Micro 2005, 25, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Efnusheva, D.; Cholakoska, A.; Tentov, A. A Survey of Different Approaches for Overcoming the Processor-Memory Bottleneck. Int. J. Comput. Sci. Inf. Technol. 2017, 9, 151–163. [Google Scholar] [CrossRef]
- Endoh, T.; Koike, H.; Ikeda, S.; Hanyu, T.; Ohno, H. An Overview of Nonvolatile Emerging Memories—Spintronics for Working Memories. IEEE J. Emerg. Sel. Top. Circuits Syst. 2016, 6, 109–119. [Google Scholar] [CrossRef]
- Govoreanu, B.; Kar, G.S.; Chen, Y.Y.; Paraschiv, V.; Kubicek, S.; Fantini, A.; Radu, I.P.; Goux, L.; Clima, S.; Degraeve, R.; et al. 10 × 10 nm2 Hf/HfOx Crossbar Resistive RAM with Excellent Performance, Reliability and Low-Energy Operation. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 31.6.1–31.6.4. [Google Scholar] [CrossRef]
- Raghavan, N.; Pey, K.L.; Li, X.; Liu, W.H.; Wu, X.; Bosman, M.; Kauerauf, T. Very Low Reset Current for an RRAM Device Achieved in the Oxygen-Vacancy-Controlled Regime. IEEE Electron Device Lett. 2011, 32, 716–718. [Google Scholar] [CrossRef]
- Khan, R.; Ilyas, N.; Shamim, M.Z.M.; Khan, M.I.; Sohail, M.; Rahman, N.; Khan, A.A.; Khang, S.N.; Khangh, A. Oxide-based resistive switching-based devices: Fabrication, influence parameters and applications. J. Mater. Chem. C 2021, 9, 15755–15788. [Google Scholar] [CrossRef]
- Ha, H.; Pyo, J.; Lee, Y.; Kim, S. Non-Volatile Memory and Synaptic Characteristics of TiN/CeOx/Pt RRAM Devices. Materials 2022, 15, 9087. [Google Scholar] [CrossRef]
- Ielmini, D. Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks. Microelectron. Eng. 2018, 190, 44–53. [Google Scholar] [CrossRef]
- Jang, J.; Gi, S.; Yeo, I.; Choi, S.; Jang, S.; Ham, S.; Lee, B.; Wang, G. A Learning-Rate Modulable and Reliable TiOx Memristor Array for Robust, Fast, and Accurate Neuromorphic Computing. Adv. Sci. 2022, 9, 2201117. [Google Scholar] [CrossRef]
- Akbari, M.; Kim, M.K.; Kim, D.; Lee, J.S. Reproducible and reliable resistive switching behaviors of AlOX/HfOX bilayer structures with Al electrode by atomic layer deposition. RSC Adv. 2017, 7, 16704–16708. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Lee, J.; Kim, S.; Lu, W.D. Retention failure analysis of metal-oxide based resistive memory. Appl. Phys. Lett. 2014, 105, 113510. [Google Scholar] [CrossRef]
- Kang, J.F.; Huang, P.; Chen, Z.; Zhao, Y.D.; Liu, C.; Han, R.Z.; Liu, L.F.; Liu, X.Y.; Wang, Y.Y.; Gao, B. Physical understanding and optimization of resistive switching characteristics in oxide-RRAM. In Proceedings of the 46th European Solid-State Device Research Conference (ESSDERC), Lausanne, Switzerland, 12–15 September 2016; pp. 154–159. [Google Scholar] [CrossRef]
- Chen, B.; Lu, Y.; Gao, B.; Fu, Y.H.; Zhang, F.F.; Huang, P.; Chen, Y.S.; Liu, L.F.; Liu, X.Y.; Kang, J.F.; et al. Physical Mechanisms of Endurance Degradation in TMO-RRAM. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 12.3.1–12.3.4. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, J.W.; Park, J.; Chung, S.W.; Roh, J.S.; Hong, S.J.; Cho, I.W.; Kwon, H.I.; Lee, J.H. Extraction of trap location and energy from random telegraph noise in amorphous TiOx resistance random access memories. Appl. Phys. Lett. 2011, 98, 143502. [Google Scholar] [CrossRef]
- Lee, J.K.; Jung, S.; Park, J.; Chung, S.W.; Roh, J.S.; Hong, S.J.; Cho, I.H.; Kwon, H.I.; Park, C.H.; Park, B.G.; et al. Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices. Appl. Phys. Lett. 2012, 101, 103506. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.; Jo, M.; Park, J.; Siddik, M.; Hwang, H. Noise-Analysis-Based Model of Filamentary Switching ReRAM with ZrOx/HfOx Stacks. IEEE Electron. Device Lett. 2011, 32, 964–966. [Google Scholar] [CrossRef]
- Maccaronio, V.; Crupi, F.; Procel, L.M.; Goux, L.; Simoen, E.; Trojman, L.; Miranda, E. DC and low-frequency noise behavior of the conductive filament in bipolar HfO2-based resistive random access memory. Microelectron. Eng. 2013, 107, 1–5. [Google Scholar] [CrossRef]
- Abgall, F. Switching phenomena in titanium oxide thin films. Solid-State Electron. 1986, 11, 535–541. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, J.Y.; Ryu, M.K.; Choi, S.Y. Bipolar resistive switching in amorphous titanium oxide thin film. Phys. Status Solidi Rapid Res. Lett. 2010, 1, 28–30. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.Y.; Kim, S.K.; Lee, J.Y.; Choi, S.Y. Role of Interface Reaction on Resistive Switching of Metal/Amorphous TiO2/Al RRAM Devices. J. Electrochem. Soc. 2011, 158, H979–H982. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Kim, S.K.; Lee, J.Y.; Choi, S.Y. Impact of amorphous titanium oxide film on the device stability of Al/TiO2/Al resistive memory. Appl. Phys. A 2011, 102, 967–972. [Google Scholar] [CrossRef]
- Moon, K.; Lim, S.; Park, J.; Sung, C.; Oh, S.; Woo, J.; Lee, J.; Hwang, H. RRAM-based synapse devices for neuromorphic systems. Faraday Discuss. 2019, 213, 421. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Meng, J.L.; Li, Q.X.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Zhang, D.W. Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique. J. Mater. Sci. Technol. 2021, 60, 21–26. [Google Scholar] [CrossRef]
- Pandey, V.; Adiba, A.; Ahmad, T.; Nehla, P.; Munjal, S. Forming-free bipolar resistive switching characteristics in Al/Mn3O4/FTO RRAM device. J. Phys. Chem. Solids 2022, 165, 110689. [Google Scholar] [CrossRef]
- Adiba, A.; Pandey, V.; Ahmad, T.; Nehla, P.; Munjal, S. Multilevel resistive switching with negative differential resistance in Al/NiO/ZnFe2O4/ITO ReRAM device. Phys. B 2023, 654, 414742. [Google Scholar] [CrossRef]
- Pandey, V.; Adiba, A.; Nehla, P.; Munjal, S.; Ahmad, T. Bipolar resistive switching with multiple intermediate resistance states in Mn3O4 thin film. Mater. Today Commun. 2023, 34, 105484. [Google Scholar] [CrossRef]
- Choi, S.S.; Choi, A.R.; Yang, J.W.; Hwang, Y.W.; Cho, D.H.; Shim, K.H. Comparative study of low frequency noise and hot-carrier reliability in SiGe PD SOI pMOSFETs. Appl. Surf. Sci. 2008, 254, 6190–6193. [Google Scholar] [CrossRef]
- Ciofi, C.; Neri, B. Low-frequency noise measurements as a characterization tool for degradation phenomena in solid-state devices. J. Phys. D Appl. Phys. 2000, 30, R199–R216. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, J.Y.; Choi, S.Y.; Kim, J.W. Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 2009, 95, 162108. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Aluguri, R.; Chand, U.; Tseng, T.Y. Metal oxide resistive switching memory: Materials, properties and switching mechanisms. Ceram. Int. 2017, 43, S547–S556. [Google Scholar] [CrossRef]
- Bagdzevicius, S.; Maas, K.; Boudard, M.; Burriel, M. Interface-type resistive switching in perovskite materials. J. Electroceram. 2017, 39, 157–184. [Google Scholar] [CrossRef]
- Zhang, P.; Ang, Y.S.; Garner, A.L.; Valfells, A.; Luginsland, J.W.; Ang, L.K. Space–charge limited current in nanodiodes: Ballistic, collisional, and dynamical effects. J. Appl. Phys. 2021, 129, 100902. [Google Scholar] [CrossRef]
- Kwan, C.P.; Street, M.; Mahmood, A.; Echtenkamp, W.; Randle, M.; He, K.; Nathawat, J.; Arabchigavkani, N.; Barut, B.; Yin, S.; et al. Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates. AIP Adv. 2019, 9, 055018. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Lee, C.B.; Lee, D.S.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.B.; Kim, C.J.; Seo, D.H.; Seo, S.; et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 2011, 10, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Jieng, J.H.; Jang, W.Y.; Lin, C.H.; Tseng, T.Y. Improved Resistive Switching Characteristics by Al2O3 Layers Inclusion in HfO2-Based RRAM Devices. ECS Solid State Lett. 2013, 2, P63–P65. [Google Scholar] [CrossRef]
- Jin, S.; Kwon, J.D.; Kim, Y. Statistical Analysis of Uniform Switching Characteristics of Ta2O5-Based Memristors by Embedding In-Situ Grown 2D-MoS2 Buffer Layers. Materials 2021, 14, 6275. [Google Scholar] [CrossRef] [PubMed]
- Loy, D.J.J.; Dananjaya, P.A.; Chakrabarti, S.; Tan, K.H.; Chow, S.C.W.; Toh, E.H.; Lew, W.S. Oxygen Vacancy Density Dependence with a Hopping Conduction Mechanism in Multilevel Switching Behavior of HfO2-Based Resistive Random Access Memory Devices. ACS Appl. Electron. Mater. 2020, 2, 3160–3170. [Google Scholar] [CrossRef]
- Lukichev, A. Physical meaning of the stretched exponential Kohlrausch function. Phys. Lett. A 2019, 383, 2983–2987. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Lee, H.S.; Bergeron, H.; Balla, I.; Beck, M.E.; Chen, K.S.; Hersam, M.C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Chung, H.J.; Heo, J.; Seo, S.; Cho, I.H.; Kwon, H.I.; Lee, J.H. Reliability of bottom-gate graphene field-effect transistors prepared by using inductively coupled plasma-chemical vapor deposition. Appl. Phys. Lett. 2011, 98, 193504. [Google Scholar] [CrossRef]
- Jeong, K.S.; Yun, H.J.; Kim, Y.M.; Yang, S.D.; Lee, S.Y.; Kim, Y.S.; Lee, H.D.; Lee, G.W. Investigation of the Gate Bias Stress Instability in ZnO Thin Film Transistors by Low-Frequency Noise Analysis. Jpn. J. Appl. Phys. 2013, 52, 04CF04. [Google Scholar] [CrossRef]
- Fung, T.C.; Baek, G.; Kanickib, J. Low frequency noise in long channel amorphous In–Ga–Zn–O thin film transistors. J. Appl. Phys. 2010, 108, 074518. [Google Scholar] [CrossRef] [Green Version]
- Hooge, F.N. 1/f noise sources. IEEE Trans. Electron Devices 1994, 41, 1926–1935. [Google Scholar] [CrossRef] [Green Version]
- Lordi, V.; Erhart, P.; Aberg, D. Charge carrier scattering by defects in semiconductors. Phys. Rev. B 2010, 81, 235204. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-K.; Pyo, J.; Kim, S. Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices. Materials 2023, 16, 2317. https://doi.org/10.3390/ma16062317
Lee J-K, Pyo J, Kim S. Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices. Materials. 2023; 16(6):2317. https://doi.org/10.3390/ma16062317
Chicago/Turabian StyleLee, Jung-Kyu, Juyeong Pyo, and Sungjun Kim. 2023. "Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices" Materials 16, no. 6: 2317. https://doi.org/10.3390/ma16062317
APA StyleLee, J. -K., Pyo, J., & Kim, S. (2023). Low-Frequency Noise-Based Mechanism Analysis of Endurance Degradation in Al/αTiOx/Al Resistive Random Access Memory Devices. Materials, 16(6), 2317. https://doi.org/10.3390/ma16062317