Magnetic, Optical and Phonon Properties of Ion-Doped MgO Nanoparticles. Application for Magnetic Hyperthermia
Abstract
:1. Introduction
2. The Model and the Method
3. Numerical Results and Discussion
3.1. Size Dependence of Magnetization and Curie Temperature
3.2. Ion-Doping Effects on Magnetization, Curie Temperature and Coercive Field
3.3. Application of Fe-Doped MgO NPs for MHT
3.4. Size and Doping Effects on Band Gap Energy
3.5. Size and Doping Effects on the Phonon Spectrum
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hamid, N.A.; Shamsudin, N.F.; Seec, K.W. Superconducting properties and mechanical strength of MgO fibres reinforced bulk Bi-2212 superconductor ceramics. Mater. Res. Innov. 2009, 13, 379–381. [Google Scholar] [CrossRef]
- Tang, Z.X.; Fang, X.J.; Zhang, Z.L.; Zhou, T.; Zhang, X.Y.; Shi, L.E. Nanosize MgO as antibacterial agent: Preparation and characteristics. Braz. J. Chem. Eng. 2012, 29, 775–781. [Google Scholar] [CrossRef]
- Fernandes, M.; Singh, K.R.B.; Sarkar, T.; Singh, P.; Singh, R.P. Recent Applications Of Magnesium Oxide (MgO) Nanoparticles In Various Domains. Adv. Mater. Lett. 2020, 11, 20081543. [Google Scholar] [CrossRef]
- Fahmy, H.M.; El-Hakim, M.K.; Nady, D.S.; Elkaramany, Y.; Mohamed, F.A.; Yasien, A.M.; Moustafa, M.A.; Elmsery, B.E.; Yousef, H.A. Review on MgO nanoparticles multifunctional role in the biomedical field: Properties and applications. Nanomed. J. 2022, 9, 1–14. [Google Scholar] [CrossRef]
- Jaffari, G.H.; Tahir, A.; Bah, M.; Ali, A.; Bhatti, A.S.; Shah, S.I. Study of Surface-Active Modes and Defects in Single-Phase Li-Incorporated MgO nanoparticles. J. Phys. Chem. C 2015, 119, 28182. [Google Scholar] [CrossRef]
- Wang, F.; Pang, Z.; Lin, L.; Fang, S.; Dai, Y.; Han, S. Magnetism in undoped MgO studied by density functional theory. Phys. Rev. B 2009, 80, 1. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Z.; Zhao, M.; Qin, H.; Jiang, M. Room temperature ferromagnetisam in MgO nanocrystalline powders. Appl. Phys. Lett. 2008, 93, 192503. [Google Scholar] [CrossRef]
- Martínez-Boubeta, C.; Beltran, J.I.; Balcells, L.; Konstantinovic, Z.; Valencia, S.; Schmitz, D.; Arbiol, J.; Estrade, S.; Cornil, J.; Martinez, B. Ferromagnetism in transparent thin films of MgO. Phys. Rev. B 2010, 82, 024405. [Google Scholar] [CrossRef] [Green Version]
- Hanish, K.K.; Edrees, S.J.; Shukur, M.M. The effect of transition metals incorporation on the structural and magnetic properties of MgO nanoparticles. Int. J. Eng. Trans. A Basics 2020, 33, 647. [Google Scholar] [CrossRef]
- Mishra, D.; Mandal, B.P.; Mukherjee, R.; Naik, R.; Lawes, G.; Nadgorny, B. Oxygen vacancy enhanced room temperature magnetism in Al-doped MgO nanoparticles. Appl. Phys. Lett. 2013, 102, 182404. [Google Scholar] [CrossRef] [Green Version]
- Najem, I.A.; Edrees, S.J.; Rasin, F.A. Structural and Magnetic Characterisations of Pb-Doped MgO Nanoparticles by a Modified Pechini Method. IOP Conf. Ser. Mater. Sci. Eng. 2020, 987, 012027. [Google Scholar] [CrossRef]
- Phokha, S.; Klinkaewnarong, J.; Hunpratub, S.; Boonserm, K.; Swatsitang, E.; Maensiri, S. Ferromagnetism in Fe-doped MgO nanoparticles. J. Mater. Sci. Mater. Electr. 2016, 27, 33. [Google Scholar] [CrossRef]
- Rani, N.; Chahal, S.; Kumar, P.; Shukla, R.; Singh, S.K. Role of Oxygen Vacancies for Mediating Ferromagnetic Ordering in La-Doped MgO Nanoparticles. J. Supercond. Novel Magn. 2020, 33, 1473. [Google Scholar] [CrossRef]
- Maoz, B.M.; Tirosh, E.; Sadan, M.L.; Markovich, G. Defect-induced magnetism in chemically synthesized nanoscale sheets of MgO. Phys. Rev. B 2011, 83, 161201. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, J.; Priya, S. Defect and adsorbate induced ferromagnetic spin-order in magnesium oxide nanocrystallites. Appl. Phys. Lett. 2012, 100, 192404. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jiang, Y.; Li, Y.; Yang, D.; Xu, Y.; Yan, M. Origin of room temperature ferromagnetism in MgO films. Appl. Phys. Lett. 2013, 102, 072406. [Google Scholar] [CrossRef]
- Sharma, U.; Jeevanandam, P. Synthesis of Zn2+-doped MgO nanoparticles using substituted brucite precursors and studies on their optical properties. J. Sol-Gel Sci. Technol. 2015, 78, 635. [Google Scholar] [CrossRef]
- Kamarulzaman, N.; Mustaffa, D.T.; Chayed, N.F.; Badar, N.; Taib, M.F.M.; Ibrahim, A.B.M.A. Comparison of experimental and first-principle results of band-gap narrowing of MgO nanostructures and their dependence on crystal structural parameters. Appl. Nanosc. 2018, 8, 1621. [Google Scholar] [CrossRef]
- Parvizi, E.; Tayebee, R.; Koushki, E. Mg-Doped ZnO and Zn-Doped MgO Semiconductor Nanoparticles; Synthesis and Catalytic, Optical and Electro-Optical Characterization. Semiconductors 2019, 53, 1769. [Google Scholar] [CrossRef]
- Stankic, S.; Sterrer, M.; Hofmann, P.; Bernardi, J.; Diwald, O.; Knoezinger, E. Novel Optical Surface Properties of Ca2+-Doped MgO Nanocrystals. Nano Lett. 2005, 5, 1889. [Google Scholar] [CrossRef]
- Sivasankari, J.; Sellaiyan, S.S.; Sankar, S.; Devi, L.V.; Sivajic, K. Structural and optical characterization of Er-alkali-metals codoped MgO nanoparticles synthesized by solution combustion route. Physica E 2017, 85, 152. [Google Scholar] [CrossRef]
- Borhade, A.V.; Kanade, K.G.; Tope, D.R.; Patil, M.D. A comparative study on synthesis, characterization and photocatalytic activities of MgO and Fe/MgO nanoparticles. Res. Chem. Intermed. 2012, 38, 1931. [Google Scholar] [CrossRef]
- Obeid, M.M.; Edrees, S.J.; Shukur, M.M. Synthesis and characterization of pure and cobalt doped magnesium oxide nanoparticles: Insight from experimental and theoretical investigation. Superlatt. Microstr. 2018, 122, 124. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.-K.; Chen, L.-Q.; Burakovsky, L.; Ahu, R. First-principles calculations on MgO: Phonon theory versus mean-field potential approach. J. Appl. Phys. 2006, 100, 023533. [Google Scholar] [CrossRef] [Green Version]
- Bagus, P.S.; Brundle, C.R.; Crist, B.V. Shake loss intensities in x-ray photoelectron spectroscopy: Theory, experiment, and atomic composition accuracy for MgO and related compounds. J. Vacuum Sci. Technol. A 2021, 39, 063206. [Google Scholar] [CrossRef]
- Schlecht, R.G.; Boeckelmann, H.K. Raman Scattering from Microcrystals of MgO. Phys. Rev. Lett. 1973, 31, 930. [Google Scholar] [CrossRef]
- Parlinski, K.; Lazewski, J.; Kawazoe, Y. Ab initio studies of phonons in MgO by the direct method including LO mode. J. Phys. Chem. Solids 2000, 61, 87. [Google Scholar] [CrossRef]
- Giura, P.; Paulatto, L.; He, F.; Lobo, R.; Bosak, A.; Calandrini, E.; Paolasini, L.; Antonangeli, D. Multiphonon anharmonicity of MgO. Phys. Rev. B 2019, 99, 220304(R). [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Xu, C.; Zhang, X.-F.; Zho, T. Raman and infrared-active modes in MgO nanotubes. Physica E 2009, 41, 852. [Google Scholar] [CrossRef]
- Poirier, A.; Walsh, D.; Boatner, L.A. Electronic Raman spectra of iron doped MgO. Solid State Commun. 1982, 44, 709. [Google Scholar] [CrossRef]
- Walsh, D.; Trudel, J.; Chase, L.L. The electronic Raman spectrum of cobalt doped MgO. Solid State Commun. 1984, 51, 801. [Google Scholar] [CrossRef]
- Billat, A.; Mon, J.P.; Voisin, M. Experimental and Theoretical Study of Raman Scattering in Co2+- and Fe2+-Doped Magnesium Oxide. Phys. Stat. Sol (b) 1975, 67, 335. [Google Scholar] [CrossRef]
- Billat, A.; Mon, J.P.; Voisin, M. Impurity induced Raman spectra in MgO + Fe3+ and in MgO + Cr3+ crystals. J. Phys. C 1976, 9, 1337. [Google Scholar] [CrossRef]
- Sanjuan, M.L.; Oliete, P.B.; Orera, V.M. The enhanced Raman scattering of phonons in CaF2 and MgO samples containing Ca and Li colloids. J. Phys. Condens. Mater 1994, 6, 9647. [Google Scholar] [CrossRef]
- Guha, S. Electronic and impurity-induced Raman scattering in MgO:Co2+. Phys. Rev. B 1980, 21, 5808. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, K.; Moon, J.Y.; Hyun, H.B.; Cho, S.K.; Kim, S.-J. Mechanistic Investigation on the Toxicity of MgO Nanoparticles toward Cancer Cells. J. Mater. Chem. 2012, 22, 24610. [Google Scholar] [CrossRef]
- Chalkidou, A.; Simeonidis, K.; Angelakeris, M.; Samaras, T.; Martinez-Boubeta, C.; Balcells, L.; Papazisis, K.; Dendrinou-Samara, C.; Kalogirou, O. In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment. J. Magn. Mater. 2011, 323, 775. [Google Scholar] [CrossRef]
- Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S. Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J. Photochem. Photobiol. B Biol. 2019, 190, 8. [Google Scholar] [CrossRef]
- Boubeta, M.; Balcells, L.; Cristofol, R.; Sanfeliu, C.; Rodríguez, E.; Weissleder, R.; Lope-Piedrafita, S.; Simeonidis, K.; Angelakeris, M.; Sandiumenge, F.; et al. Self-Assembled Multifunctional Fe/MgO Nanospheres for Magnetic Resonance Imaging and Hyperthermia. Nanomed. Nanotechn. Biol. Med. 2010, 6, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Di, D.R.; He, Z.Z.; Sun, Z.Q.; Liu, J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanotechnol. Biol. Med. 2012, 8, 1233–1241. [Google Scholar] [CrossRef]
- Ranathunge, T.A.; Karunaratne, D.G.G.P.; Rajapakse, R.M.G.; Watkins, D.L. Doxorubicin Loaded Magnesium Oxide Nanoflakes as pH Dependent Carriers for Simultaneous Treatment of Cancer and Hypomagnesemia. Nanomaterials 2019, 9, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almontasser, A.; Parveen, A. Probing the efect of Ni, Co and Fe doping concentrations on the antibacterial behaviors of MgO nanoparticles. Sci. Rep. 2022, 12, 7922. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Ko, J.-H. Defect states of transition metal-doped MgO for secondary electron emission of plasma display panel. J. Inform. Display 2014, 15, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Timmer, G.; Borstel, G. Electronic structure of nickel, iron, and cobalt impurities in magnesium oxide. Phys. Rev. B 1991, 43, 5098. [Google Scholar] [CrossRef] [PubMed]
- Wesselinowa, J.M. Phonon Renormalization and Damping in a Heisenberg Ferromagnet. Z. Phys. B-Cond. Matter 1987, 69, 279. [Google Scholar] [CrossRef]
- Tserkovnikov, Y.A. Decoupling of chains of equations for two-time Green’s functions. Teor. Mat. Fiz. 1971, 7, 250. [Google Scholar] [CrossRef]
- Wesselinowa, J.M. Electronic spectrum and damping of the s-d model with Coulomb interaction. J. Phys. C 1984, 17, 3737. [Google Scholar] [CrossRef]
- Skomski, R.; Balamurugan, B.; Manchanda, P.; Chipara, M.; Sellmyer, D.J. Size Dependence of Nanoparticle Magnetization. IEEE Trans. Magn. 2017, 53, 1. [Google Scholar] [CrossRef]
- Yadav, S.L. Size Dependence of Magnetization of Metal and Metal Oxides Nanoparticles. J. Nanosci. Nanoeng. Appl. 2021, 11, 9. [Google Scholar]
- Challis, L.J.; Williams, D.J. The Effect of Spin-Phonon Interactions on the Thermal Conductivity of Chromium Doped MgO. In Low Temperature Physics LT9; Daunt, J.G., Edwards, D.O., Milford, F.J., Yaqub, M., Eds.; Springer: Boston, MA, USA, 1965; ISBN 978-1-4899-6217-1. [Google Scholar]
- Gallay, R.; van der Klink, J.J. Spin-phonon interaction in small particles of MgO:Ni2+. Phys. Rev. B 1988, 38, 3443. [Google Scholar] [CrossRef]
- Koziol-Rachwal, A.; Szpytma, M.; Spiridis, N.; Freindl, K.; Korecki, J.; Janus, W.; Nayyef, H.; Drozdz, P.; Slezak, M.; Zajac, M.; et al. Beating the limitation of the Neel temperature of FeO with antiferromagnetic proximity in FeO/CoO. Appl. Phys. Lett. 2022, 120, 072404. [Google Scholar] [CrossRef]
- Bures, R.; Faberova, M.; Bircakova, Z.; Kollar, P.; Fuezer, J.; Jakucin, M.; Slovensky, P. Functional Properties and Microstructure Development of Micro-Nano Fe/MgO Composite. Acta Phys. Pol. A 2020, 137, 283. [Google Scholar] [CrossRef]
- Rahban, D.; Doostan, M.; Salimi, A. Cancer Therapy; Prospects for Application of Nanoparticles for Magnetic-Based Hyperthermia. Cancer Investig. 2020, 38, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Fatima, H.; Charinpanitkul, T.; Ki, K.-S. Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy. Nanomaterials 2021, 11, 1203. [Google Scholar] [CrossRef]
- Mittag, A.; Schneider, T.; Westermann, M.; Glei, M. Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells. Arch. Toxicol. 2019, 93, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, I.N.; Apostolov, A.T.; Wesselinowa, J.M. Microscopic theory of the specific absorption rate for self-controlled magnetic hyperthermia. J. Magn. Magn. Mater. 2021, 522, 167504. [Google Scholar] [CrossRef]
- Popov, A.I.; Shirmane, L.; Pankratov, V.; Lushchik, A.; Kotlov, A.; Serga, V.E.; Kulikova, L.D.; Chikvaidze, G.; Zimmermann, J. Comparative study of the luminescence properties of macro-and nanocrystalline MgO using synchrotron radiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 310, 23–26. [Google Scholar] [CrossRef]
- Feldbach, E.; Jaaniso, R.; Kodu, M.; Denks, V.P.; Kasikov, A.; Liblik, P.; Maaroos, A.; Mändar, H.; Kirm, M. Luminescence characterization of ultrathin MgO films of high crystallinity prepared by pulsed laser deposition. J. Mater. Sci. Mater. Electron. 2009, 20, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Ghaleb, A.M.; Munef, R.A.; Mohammed, S.F. First principles study the effect of Zn doped MgO on the energy band gap using GGA approximation. J. Ovonic Res. 2022, 18, 11–20. [Google Scholar] [CrossRef]
- Chayed, N.F.; Badar, N.; Elong, K.; Kamarulzaman, N. Band Gap Narrowing of MgO and Mg0.95Zn0.05O Nanostructures. Solid State Phenom. 2020, 307, 273–278. [Google Scholar] [CrossRef]
- Prado, D.C.; Fernandez, I.; Rodriguez-Paez, J.E. MgO nanostructures: Synthesis, characterization and tentative mechanisms of nanoparticles formation. Nano-Struct. Nano-Objects 2020, 23, 100482. [Google Scholar] [CrossRef]
- Saengkwamsawang, P.; Tochat, K. Characterizations and optical properties of MgO. J. Nanopart. Res. 2021, 23, 214. [Google Scholar] [CrossRef]
- Hadia, N.M.A.; Mohamed, H.A.-H. Characteristics and optical properties of MgO nanowires synthesized by solvothermal method. Mater. Sci. Semicond. Proc. 2015, 29, 238. [Google Scholar] [CrossRef]
- Sikdar, S.; Banu, A.; Chakraborty, S.; Baildya, N.; Majumdar, S. Synthesis, photocatalytic and antibacterial activities of a PDS-activated MgO nanocatalyst: Experimental and theoretical studies. New J. Chem. 2022, 46, 6694. [Google Scholar] [CrossRef]
- Badar, N.; Chayed, N.F.; Rusdi, R.; Kamarudin, N.; Kamarulzaman, N. Band Gap Energies of Magnesium Oxide Nanomaterials Synthesized by the Sol-gel Method. Adv. Mater. Res. 2012, 545, 157. [Google Scholar] [CrossRef]
- Raza, S.M.; Qaseem, S.; Shah, S.N.; Ali, S.R.; Bibi, Y.; Tahir, A.; Wahab, A. Tailoring the Magnetic and Optical properties of MgO Nanoparticles by Cobalt doping. J. Nanoscope 2022, 3, 85–99. [Google Scholar] [CrossRef]
- Ortuno-Lopez, M.B.; Sotelo-Lerma, M.; Mendoza-Galvana, A.; Ramirez-Bona, R. Optical band gap tuning and study of strain in CdS thin films. Vacuum 2004, 76, 181. [Google Scholar] [CrossRef]
- Srisuvetha, V.T.; Rayar, S.L.; Shanthi, G. Role of cerium (Ce) dopant on structural, optical and photocatalytic properties of MgO nanoparticles by wet chemical route. J. Mater. Sci. Mater. Electron. 2020, 31, 3. [Google Scholar] [CrossRef]
- Ikram, M.; Inayat, T.; Haider, A.; Ul-Hamid, A.; Haider, J.; Nabgan, W.; Saeed, A.; Shahbaz, A.; Hayat, S.; Ul-Ain, K.; et al. Graphene Oxide-Doped MgO Nanostructures for Highly Efcient Dye Degradation and Bactericidal Action. Nanoscale Res. Lett. 2021, 16, 56. [Google Scholar] [CrossRef]
- Anilkumar, M.; Nagaswarupa, H.; Nagabhushana, H.; Sharma, S.; Vidya, Y.; Anantharaju, K.; Prashantha, S.; Shivakuamra, C.; Gurushantha, K. Bio-inspired route for the synthesis of spherical shaped MgO:Fe(3+) nanoparticles: Structural, photoluminescence and photocatalytic investigation. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 149, 703. [Google Scholar] [CrossRef]
- Rajendran, V.; Deepa, B.; Mekala, R. Studies on structural, morphological, optical and antibacterial activity of Pure and Cu-doped MgO nanoparticles synthesized by co-precipitation method. Mater. Today Proc. 2018, 5, 8796. [Google Scholar] [CrossRef]
- Ishikawa, K.; Fujima, N.; Komura, H. First-order Raman scattering in MgO microcrystals. J. Appl. Phys. 1985, 57, 973. [Google Scholar] [CrossRef]
- Boeckelmann, H.K.; Schlecht, R.G. Raman scattering from microcrystals of MgO. Phys. Rev. B 1974, 10, 5225–5231. [Google Scholar] [CrossRef]
- Papillon, F.; Rohrer, G.S.; Wynblatt, P. Effect of Segregating Impurities on the Grain-Boundary Character Distribution of Magnesium Oxide. J. Am. Ceram. Soc. 2009, 92, 3044. [Google Scholar] [CrossRef]
- Chavarria-Sibaja, A.; Marin-Sosa, S.; Bolanos-Jimenez, E.; Herndndez-Calderon, M.; Herrera-Sancho, O.A. MgO surface lattice phonons observation during interstellar ice transition. Sci. Rep. 2021, 11, 6149. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolova, I.; Apostolov, A.; Wesselinowa, J. Magnetic, Optical and Phonon Properties of Ion-Doped MgO Nanoparticles. Application for Magnetic Hyperthermia. Materials 2023, 16, 2353. https://doi.org/10.3390/ma16062353
Apostolova I, Apostolov A, Wesselinowa J. Magnetic, Optical and Phonon Properties of Ion-Doped MgO Nanoparticles. Application for Magnetic Hyperthermia. Materials. 2023; 16(6):2353. https://doi.org/10.3390/ma16062353
Chicago/Turabian StyleApostolova, Iliana, Angel Apostolov, and Julia Wesselinowa. 2023. "Magnetic, Optical and Phonon Properties of Ion-Doped MgO Nanoparticles. Application for Magnetic Hyperthermia" Materials 16, no. 6: 2353. https://doi.org/10.3390/ma16062353
APA StyleApostolova, I., Apostolov, A., & Wesselinowa, J. (2023). Magnetic, Optical and Phonon Properties of Ion-Doped MgO Nanoparticles. Application for Magnetic Hyperthermia. Materials, 16(6), 2353. https://doi.org/10.3390/ma16062353