Investigation into the Microstructure and Hardness of Additively Manufactured (3D-Printed) Inconel 718 Alloy
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Microstructure of the Alloys
3.1.1. Microstructural Investigation by Electron Microscopy
3.1.2. Grain Orientation and Texture of the Alloys
3.2. Mechanical Properties of the Alloys
3.2.1. Vickers’s Hardness
3.2.2. Plastic and Elastic Behavior under Loading
4. Conclusions
- ➢
- The microstructure of L-PBF-processed alloy is totally different and unique, being composed of cellular structure, melt-pool boundaries and grain boundaries. EBSD analysis confirms the larger grain size (~10 µm) of the cast alloy compared to the smaller cell size (~100–600 nm) of the L-PBF alloy.
- ➢
- The hardness of the L-PBF-processed alloy (279–349 MPa) was lower than that of cast alloy (408 MPa). The resistance of plasticity of the L-PBF-processed alloy was about 1.4–1.6 times lower than the cast alloy, which also gave rise to higher shear stresses of the cast alloy. The maximum shear stress of the L-PBF process alloy was in the range of 884–956 MPa, in comparison to 986 MPa for the cast alloy.
- ➢
- The somewhat inferior mechanical properties of the L-PBF alloy, compared to those of the cast alloy, is induced by the absence of any kind of heat/solution treatment of the L-PFB alloy that favors the solid solution strengthening/precipitation hardening. Therefore, it is recommended that researchers carry out appropriate heat treatment/aging of such alloys prior to any application.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.D.; Zhang, W. Additive manufacturing of metallic components–process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Majeed, A.; Ahmed, A.; Lv, J.; Peng, T.; Muzamil, M. A state-of-the-art review on energy consumption and quality characteristics in metal additive manufacturing processes. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–25. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, V.S.; Sachdeva, A. Progress in selective laser sintering using metallic powders: A review. Mater. Sci. Technol. 2016, 32, 760–772. [Google Scholar] [CrossRef]
- Shiomi, M.; Osakada, K.; Nakamura, K.; Yamashita, T.; Abe, F. Residual Stress within Metallic Model Made by Selective Laser Melting Process. CIRP Ann. 2004, 53, 195–198. [Google Scholar] [CrossRef]
- Vilaro, T.; Kottman-Rexerodt, V.; Thomas, M.; Colin, C.; Bertrand, P.; Thivillon, L.; Abed, S.; Ji, V.; Aubry, P.; Peyre, P.; et al. Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes. In Advanced Materials Research; Trans Tech Publications Ltd.: Zurich, Switzerland, 2010. [Google Scholar]
- Jung, H.Y.; Choi, S.J.; Prashanth, K.G.; Stoica, M.; Scudino, S.; Yi, S.; Kühn, U.; Kim, D.H.; Kim, K.B.; Eckert, J. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study. Mater. Des. 2015, 86, 703–708. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Saunders, M.; Suvorova, A.; Zhang, L.; Liu, Y.; Fang, M.; Huang, Z.; Sercombe, T. A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater. 2015, 95, 74–82. [Google Scholar] [CrossRef]
- Montero-Sistiaga, M.L.; Pourbabak, S.; Van Humbeeck, J.; Schryvers, D.; Vanmeensel, K. Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting). Mater. Des. 2019, 165, 107598. [Google Scholar] [CrossRef]
- Tomus, D.; Jarvis, T.; Wu, X.; Mei, J.; Rometsch, P.; Herny, E.; Rideau, J.-F.; Vaillant, S. Controlling the Microstructure of Hastelloy-X Components Manufactured by Selective Laser Melting. Phys. Procedia 2013, 41, 823–827. [Google Scholar] [CrossRef] [Green Version]
- Wang, F. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology. Int. J. Adv. Manuf. Technol. 2011, 58, 545–551. [Google Scholar] [CrossRef]
- Harrison, N.J.; Todd, I.; Mumtaz, K. Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach. Acta Mater. 2015, 94, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Basak, A.; Diomidis, N.; Celis, J.-P.; Masquelier, C.; Warichet, D. Chemical reactivity of thermo-hardenable steel weld joints investigated by electrochemical impedance spectroscopy. Electrochim. Acta 2008, 53, 7575–7582. [Google Scholar] [CrossRef]
- Basak, A.; Lee, A.; Pramanik, A.; Neubauer, K.; Prakash, C.; Shankar, S. Material extrusion additive manufacturing of 17–4 PH stainless steel: Effect of process parameters on mechanical properties. Rapid Prototyp. J. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Juri, A.Z.; Basak, A.K.; Yin, L. In-situ SEM cyclic nanoindentation of pre-sintered and sintered zirconia materials. J. Mech. Behav. Biomed. Mater. 2022, 126, 105068. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lao, C.; Chen, Z.; Liu, Y.; Wang, H.; Wendrock, H.; Eckert, J.; Scudino, S. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting. J. Mater. Sci. Technol. 2019, 36, 18–26. [Google Scholar] [CrossRef]
- Wang, Z.; Ummethala, R.; Singh, N.; Tang, S.; Suryanarayana, C.; Eckert, J.; Prashanth, K.G. Selective Laser Melting of Aluminum and Its Alloys. Materials 2020, 13, 4564. [Google Scholar] [CrossRef]
- Ciurana, J.; Hernandez, L.; Delgado, J. Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material. Int. J. Adv. Manuf. Technol. 2013, 68, 1103–1110. [Google Scholar] [CrossRef]
- Sercombe, T.B.; Li, X. Selective laser melting of aluminium and aluminium metal matrix composites: Review. Mater. Technol. 2016, 31, 77–85. [Google Scholar] [CrossRef]
- Choudhary, S.; Pandey, A.; Gaur, V. Role of microstructural phases in enhanced mechanical properties of additively manufactured IN718 alloy. Mater. Sci. Eng. A 2023, 862, 144484. [Google Scholar] [CrossRef]
- Parry, L.; Ashcroft, I.; Wildman, R. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit. Manuf. 2016, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- An, X.L.; Zhou, L.; Zhang, B.; Chu, C.L.; Han, L.Y.; Chu, P.K. Inconel 718 treated with two-stage solution and aging processes: Microstructure evolution and enhanced properties. Mater. Res. Express 2019, 6, 075803. [Google Scholar] [CrossRef]
- Kim, D.-K.; Woo, W.; Hwang, J.-H.; An, K.; Choi, S.-H. Stress partitioning behavior of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction. J. Alloys Compd. 2016, 686, 281–286. [Google Scholar] [CrossRef]
- Reschetnik, W.; Brüggemann, J.-P.; Aydinöz, M.; Grydin, O.; Hoyer, K.-P.; Kullmer, G.; Richard, H. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy. Procedia Struct. Integr. 2016, 2, 3040–3048. [Google Scholar] [CrossRef] [Green Version]
- Sidambe, A.; Judson, D.; Colosimo, S.; Fox, P. Laser powder bed fusion of a pure tungsten ultra-fine single pinhole collimator for use in gamma ray detector characterisation. Int. J. Refract. Met. Hard Mater. 2019, 84, 104998. [Google Scholar] [CrossRef]
- Monroy, K.; Delgado, J.; Ciurana, J. Study of the Pore Formation on CoCrMo Alloys by Selective Laser Melting Manufacturing Process. Procedia Eng. 2013, 63, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Weingarten, C.; Buchbinder, D.; Pirch, N.; Meiners, W.; Wissenbach, K.; Poprawe, R. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J. Mater. Process. Technol. 2015, 221, 112–120. [Google Scholar] [CrossRef]
- Tabbakh, T.; Alshihri, S.; Basak, A.K.; Kurdi, A. Strength of a 3D Printed Al 7068 Alloy under Micro-Pillar Compression. Met. Mater. Int. 2022, 28, 2706–2718. [Google Scholar] [CrossRef]
- Kurdi, A.; Basak, A. Micro-mechanical behaviour of selective laser melted Ti6Al4V under compression. Mater. Sci. Eng. A 2021, 826, 141975. [Google Scholar] [CrossRef]
- Najafzadegan, F.; Mansouri, H.; Shamanian, M. Investigation of Microstructure of the Weld Zone of Hastelloy X via Pulsed Nd-YAG Laser Welds. J. Adv. Mater. Process. 2013, 1, 49–56. [Google Scholar]
- Prashanth, K.G.; Scudino, S.; Klauss, H.J.; Surreddi, K.B.; Löber, L.; Wang, Z.; Chaubey, A.K.; Kühn, U.; Eckert, J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng. A 2014, 590, 153–160. [Google Scholar] [CrossRef]
- Akhouri, D.; Banerjee, D.; Mishra, S.B. A review report on the plating process of fused deposition modelling (FDM) built parts. Mater. Today Proc. 2020, 26, 2140–2142. [Google Scholar] [CrossRef]
- Zhou, L.; Mehta, A.; McWilliams, B.; Cho, K.; Sohn, Y. Microstructure, precipitates and mechanical properties of powder bed fused inconel 718 before and after heat treatment. J. Mater. Sci. Technol. 2018, 35, 1153–1164. [Google Scholar] [CrossRef]
- Holland, S.; Wang, X.; Chen, J.; Cai, W.; Yan, F.; Li, L. Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting. J. Alloys Compd. 2019, 784, 182–194. [Google Scholar] [CrossRef]
- Zhang, L.; Basak, A. Quantitative prediction of phase transformations in silicon during nanoindentation. Philos. Mag. Lett. 2013, 93, 448–456. [Google Scholar] [CrossRef]
- Liu, F.; Lin, X.; Yang, G.; Song, M.; Chen, J.; Huang, W. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy. Opt. Laser Technol. 2010, 43, 208–213. [Google Scholar] [CrossRef]
- Basak, A.K.; Zhang, L. Deformation of Ti-Based Bulk Metallic Glass under a Cutting Tip. Tribol. Lett. 2018, 66, 27. [Google Scholar] [CrossRef]
- Sakai, M. The Meyer hardness: A measure for plasticity? J. Mater. Res. 1999, 14, 3630–3639. [Google Scholar] [CrossRef]
- Oyen, M.L. Nanoindentation hardness of mineralized tissues. J. Biomech. 2006, 39, 2699–2702. [Google Scholar] [CrossRef]
- Alao, A.-R.; Yin, L. Assessment of Elasticity, Plasticity and Resistance to Machining-induced Damage of Porous Pre-sintered Zirconia using Nanoindentation Techniques. J. Mater. Sci. Technol. 2016, 32, 402–410. [Google Scholar] [CrossRef]
- Muraca, R.F.; Whittick, J.S. Materials Data Handbook: Inconel Alloy; Western Applied Research & Development, Inc.: San Carlos, CA, USA, 1972; Volume 718. [Google Scholar]
- Packard, C.; Schuh, C. Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 2007, 55, 5348–5358. [Google Scholar] [CrossRef]
- Lawn, B.R. Indentation of Ceramics with Spheres: A Century after Hertz. J. Am. Ceram. Soc. 1998, 81, 1977–1994. [Google Scholar] [CrossRef]
Properties | P-LBF-Processed Inconel 718 Alloy | Cast Inconel 718 Alloy | ||
---|---|---|---|---|
Lateral (YZ) Plane | Frontal (XZ) Plane | Horizontal (XY) Plane | ||
Density (gm/cc) | 8.08 | 8.2 | ||
Hardness (HV0.3) | 330 ± 8.05 | 279.45 ± 9.45 | 349.18 ± 10.73 | 408.82 ± 1303 |
Hardness (MPa) | 337.52 ± 23.71 | 331.32 ± 17.30 | 372.5 ± 21.03 | 502.66 ± 21.95 |
Young’s modulus (GPa) | 88.65 ± 3.81 | 90.11 ± 2.43 | 92.78 ± 5.77 | 99.67 ± 6.94 |
Resistance to plasticity (MPa) | 530.19 | 531.62 | 529.69 | 288.83 |
Maximum shear stresses (GPa) | 884.25 | 945.20 | 956.25 | 986.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurdi, A.; Aldoshan, A.; Alshabouna, F.; Alodadi, A.; Degnah, A.; Alnaser, H.; Tabbakh, T.; Basak, A.K. Investigation into the Microstructure and Hardness of Additively Manufactured (3D-Printed) Inconel 718 Alloy. Materials 2023, 16, 2383. https://doi.org/10.3390/ma16062383
Kurdi A, Aldoshan A, Alshabouna F, Alodadi A, Degnah A, Alnaser H, Tabbakh T, Basak AK. Investigation into the Microstructure and Hardness of Additively Manufactured (3D-Printed) Inconel 718 Alloy. Materials. 2023; 16(6):2383. https://doi.org/10.3390/ma16062383
Chicago/Turabian StyleKurdi, Abdulaziz, Abdelhakim Aldoshan, Fahad Alshabouna, Abdulaziz Alodadi, Ahmed Degnah, Husain Alnaser, Thamer Tabbakh, and Animesh Kumar Basak. 2023. "Investigation into the Microstructure and Hardness of Additively Manufactured (3D-Printed) Inconel 718 Alloy" Materials 16, no. 6: 2383. https://doi.org/10.3390/ma16062383
APA StyleKurdi, A., Aldoshan, A., Alshabouna, F., Alodadi, A., Degnah, A., Alnaser, H., Tabbakh, T., & Basak, A. K. (2023). Investigation into the Microstructure and Hardness of Additively Manufactured (3D-Printed) Inconel 718 Alloy. Materials, 16(6), 2383. https://doi.org/10.3390/ma16062383