DFT Method Used for Prediction of Molecular and Electronic Structures of Mn(VI) Macrocyclic Complexes with Porhyrazine/Phthalocyanine and Two Oxo Ligands
Abstract
:1. Introduction
2. Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mikhailov, O.V.; Chachkov, D.V. M(VI) Oxidation State Stabilization in Iron, Cobalt and Nickel Heteroligand Metal Chelates Containing 3,7,11,15-Tetraazaporphine and Two Axial Oxo Ligands: Quantum-Chemical Simulation. Int. J. Mol. Sci. 2020, 21, 1494. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, O.V.; Chachkov, D.V. Stabilization of dioxochromium(VI) in the complex with tetra[benzo]porphyrazine and two oxo ligands: DFT quantum-chemical consideration. Eur. Chem. Bull. 2020, 9, 416–419. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. Heteroligand complexes of chromium, manganese, and iron with trans-dibenzoporphyrazine and two oxo ligands: DFT calculations. Russ. Chem. Bull. 2022, 71, 656–664. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. DFT Quantum-chemical prediction of molecular structure of iron(VI) macrocyclic complex with phthalocyanine and two oxo ligands. J. Porph. Phthalocyanines 2022, 26, 367–375. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. DFT Quantum-Chemical Modeling Molecular Structures of Cobalt Macrocyclic Complexes with Porphyrazine or Its Benzo-Derivatives and Two Oxygen Acido Ligands. Int. J. Mol. Sci. 2020, 21, 9085. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, O.V.; Chachkov, D.V. Copper macrocyclic complex with trans-di[benzo]porphyrazine and two oxo ligands: DFT quantum-chemical design. J. Porph. Phthalocyanines 2022, 26, 180–185. [Google Scholar] [CrossRef]
- Kasuda, K.; Tsutsui, M. Some new developments in the chemistry of metallophthalocyanines. Coord. Chem. Rev. 1980, 32, 67–95. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.L. Phthalocyanines. Research & Applications; CRC Press: London, UK, 1990. [Google Scholar]
- Sliva, W.; Mianovska, B. Metalloporphyrin arrays. Transit. Met. Chem. 2000, 25, 491–504. [Google Scholar] [CrossRef]
- Spasojević, I.; Ines Batinić-Haberle, I. Manganese(III) complexes with porphyrins and related compounds as catalytic scavengers of superoxide. Inorg. Chim. Acta 2001, 317, 230–242. [Google Scholar] [CrossRef]
- Mamardashvili, G.M.; Mamardashvili, N.Z.; Koifman, O.I. Self-assembling systems based on porphyrins. Russ. Chem. Rev. 2008, 77, 59–75. [Google Scholar] [CrossRef]
- Donzello, M.P.; Ercolani, C.; Novakova, V.; Zimcik, P.; Stuzhin, P.A. Tetrapyrazinoporphyrazines and their metal derivatives. Part I: Synthesis and basic structural information. Coord. Chem. Rev. 2016, 309, 107–179. [Google Scholar] [CrossRef]
- Lomova, T.N. Axial Coordinated Metal Porphyrins in Science and Practice; URSS: Moscow, Russia, 2018; 700p. (In Russian) [Google Scholar]
- Khelevina, O.G.; Malyasova, A.S. 40 years with porphyrazines. J. Porph. Phthalocyanines 2019, 23, 1251–1264. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, O.V.; Chachkov, D.V. (H,H)-Isomerism of cis- and trans-di[benzo]porphyrazines: Quantum chemical modeling within the framework of the DFT method. J. Porph. Phthalocyanines 2021, 25, 858–865. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. Nickel macrocyclic complexes with porphyrazine and some [benzo]substituted, oxo and fluoro ligands: DFT analysis. J. Porph. Phthalocyanines 2022, 26, 222–231. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. New heteroligand complex of cobalt with phthalocyanine, oxo and fluoro ligands: DFT consideration. J. Porph. Phthalocyanines 2022, 26, 316–324. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835. [Google Scholar] [CrossRef]
- Medvedev, M.G.; Bushmarinov, I.S.; Sun, J.; Perdew, J.P.; Lyssenko, K.A. Density functional theory is straying from the path toward the exact functional. Science 2017, 355, 49–52. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. Quantum-chemical calculation of molecular structures of (5656)macrotetracyclic 3d-metal complexes “self-assembled” in quaternary systems M(II) ion-ethanedithioamide-formaldehyde-ammonia by the density functional theory method. Russ. J. Inorg. Chem. 2014, 59, 218–223. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. Structure of (5656)macrotetracyclic chelates in the ternary systems M(II)-ethanedithioamide-acetone (M = Mn, Fe, Co, Ni, Cu, Zn) according to DFT calculations. Russ. J. Inorg. Chem. 2013, 58, 1073–1078. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. Copper(IV) Stabilization in Macrocyclic Complexes with 3,7,11,15-Tetraazaporphine, Its Di[benzo]- or Tetra[benzo] Derivatives and Oxide Anion: Quantum-Chemical Research. Materials 2020, 13, 3162. [Google Scholar] [CrossRef] [PubMed]
- Hoe, W.M.; Cohen, A.; Handy, N.C. Assessment of a new local exchange functional OPTX. Chem. Phys. Lett. 2001, 341, 319–328. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, H.; Duelund, L.; Winkler, H.; Toftlund, H.; Trautwein, A.X. Free Energy of Spin-Crossover Complexes Calculated with Density Functional Methods. Inorg. Chem. 2001, 40, 2201–2203. [Google Scholar] [CrossRef] [PubMed]
- Swart, M.; Groenhof, A.R.; Ehlers, A.W.; Lammertsma, K. Validation of Exchange−Correlation Functionals for Spin States of Iron Complexes. J. Phys. Chem. A 2004, 108, 5479–5483. [Google Scholar] [CrossRef]
- Swart, M.; Ehlers, A.W.; Lammertsma, K. Performance of the OPBE exchange-correlation functional. Mol. Phys. 2004, 102, 2467–2474. [Google Scholar] [CrossRef]
- Swart, M. Metal–ligand bonding in metallocenes: Differentiation between spin state, electrostatic and covalent bonding. Inorg. Chim. Acta 2007, 360, 179–189. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Weinhold, F.; Landis, C.R.; Glendening, E.D. What is NBO analysis and how is it useful? Int. Rev. Phys. Chem. 2016, 35, 399–440. [Google Scholar] [CrossRef]
- Ochterski, J.W. Thermochemistry in Gaussian; Gaussian, Inc.: Wallingford, CT, USA, 2000. [Google Scholar]
- Mikhailov, O.V.; Chachkov, D.V. About possibility of stabilization of unusual copper(IV) oxidation state in complexes with porphyrazine and two fluorine ligands: Quantum-chemical design. Inorg. Chem. Commun. 2019, 106, 224–227. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. Molecular structures of heteroligand ScIII complexes with porphyrazine, its dibenzo and tetrabenzo derivatives, and fluoride anion, as determined from DFT calculations. Russ. Chem. Bull. 2021, 70, 276–282. [Google Scholar] [CrossRef]
Macrocyclic Complex | [Mn(P)(O)2] | [Mn(Pc)(O)2] | ||
---|---|---|---|---|
Parameter of Molecular Structure | Calculated Using DFT B3PW91/TZVP | Calculated Using DFT OPBE/TZVP | Calculated Using DFT B3PW91/TZVP | Calculated Using DFT OPBE/TZVP |
Mn-N bond lengths in the MnN4 chelate node, pm | ||||
Mn1N1 | 193.2 | 195.0 | 198.2 | 198.0 |
Mn1N2 | 196.1 | 195.0 | 198.2 | 198.0 |
Mn1N3 | 193.2 | 196.5 | 198.2 | 198.0 |
Mn1N4 | 196.1 | 196.5 | 198.2 | 198.0 |
Axial Mn-O bond lengths, pm | ||||
Mn1O1 | 187.9 | 165.1 | 164.0 | 164.9 |
Mn1O2 | 177.7 | 165.3 | 164.0 | 164.9 |
C-N bond lengths in 6-numbered chelate rings, pm | ||||
N1C3 | 137.0 | 136.5 | 135.3 | 136.2 |
N1C4 | 137.0 | 137.0 | 135.3 | 136.2 |
N2C1 | 135.9 | 137.0 | 135.3 | 136.2 |
N2C2 | 135.9 | 136.5 | 135.3 | 136.2 |
N3C7 | 137.0 | 136.5 | 135.3 | 136.2 |
N3C8 | 137.0 | 135.8 | 135.3 | 136.2 |
N4C5 | 135.9 | 135.8 | 135.3 | 136.2 |
N4C6 | 135.9 | 136.5 | 135.3 | 136.2 |
N5C2 | 132.0 | 132.5 | 132.2 | 132.3 |
N5C3 | 132.0 | 132.5 | 132.2 | 132.3 |
N6C6 | 132.0 | 132.5 | 132.2 | 132.3 |
N6C7 | 132.0 | 132.5 | 132.2 | 132.3 |
N7C4 | 132.0 | 132.5 | 132.2 | 132.3 |
N7C5 | 132.0 | 132.6 | 132.2 | 132.3 |
N8C1 | 132.0 | 132.5 | 132.2 | 132.3 |
N8C8 | 132.0 | 132.6 | 132.2 | 132.3 |
C-C bond lengths in 5-numbered chelate ring (N1C4C9C10C3), pm | ||||
C4C9 | 144.4 | 145.4 | 146.8 | 146.3 |
C9C10 | 135.5 | 135.8 | 139.9 | 140.5 |
C10C3 | 144.4 | 145.3 | 146.8 | 146.3 |
Bond angles in the MnN4 chelate node, deg | ||||
(N1Mn1N2) | 89.9 | 89.4 | 90.0 | 90.0 |
(N2Mn1N3) | 89.9 | 89.8 | 90.0 | 90.0 |
(N3Mn1N4) | 89.9 | 91.1 | 90.0 | 90.0 |
(N4Fe1N1) | 89.9 | 89.8 | 90.0 | 90.0 |
Bond angles sum (BAS), deg | 359.6 | 360.1 | 360.0 | 360.0 |
Non-bond angles between N atoms in N4 grouping, deg | ||||
(N1N2N3) | 89.1 | 90.7 | 90.0 | 90.0 |
(N2N3N4) | 90.9 | 89.3 | 90.0 | 90.0 |
(N3N4N1) | 89.1 | 89.3 | 90.0 | 90.0 |
(N4N1N2) | 90.9 | 90.7 | 90.0 | 90.0 |
Non-bond angles sum (NBAS), deg | 360.0 | 360.0 | 360.0 | 360.0 |
Bond angles in 6-numbered chelate ring (Mn1N1C4N7C5N4), deg | ||||
(Mn1N1C4) | 125.8 | 125.4 | 125.0 | 124.8 |
(N1C4N7) | 127.9 | 128.2 | 128.2 | 127.7 |
(C4N7C5) | 122.9 | 123.2 | 123.7 | 123.5 |
(N7C5N4) | 127.4 | 126.7 | 128.1 | 127.7 |
(C5N4Mn1) | 125.9 | 126.7 | 125.0 | 124.8 |
(N4Mn1N1) | 89.9 | 89.8 | 90.0 | 90.0 |
Bond angles sum (BAS61), deg | 719.8 | 720.0 | 720.0 | 718.5 |
Bond angles in 6-numbered chelate ring (Mn1N4C6N6C7N3), deg | ||||
(Mn1N4C6) | 125.9 | 124.7 | 125.0 | 124.8 |
(N4C6N6) | 127.4 | 127.8 | 128.2 | 127.7 |
(C6N6C7) | 122.9 | 124.1 | 123.7 | 123.5 |
(N6C7N3) | 127.9 | 127.8 | 128.1 | 127.7 |
(C7N3Mn1) | 125.8 | 124.7 | 125.0 | 124.8 |
(N3Mn1N4) | 89.9 | 91.1 | 90.0 | 90.0 |
Bond angles sum (BAS62), deg | 719.8 | 720.0 | 720.0 | 718.5 |
Bond angles in 5-numbered ring (C3N1C4C9C10), deg | ||||
(C3N1C4) | 108.2 | 108.0 | 110.0 | 109.8 |
(N1C4C9) | 108.5 | 108.7 | 108.8 | 108.8 |
(C4C9C10) | 107.4 | 107.2 | 106.2 | 106.3 |
(C9C10C3) | 107.4 | 107.0 | 106.2 | 106.3 |
(C10C3N1) | 108.5 | 109.1 | 108.8 | 108.8 |
Bond angles sum (BAS51), deg | 540.0 | 540.0 | 540.0 | 540.0 |
Bond angles in 5-numbered ring (C1N2C2C12C11), deg | ||||
(C1N2C2) | 108.2 | 108.0 | 110.0 | 109.8 |
(N2C2C12) | 108.9 | 109.1 | 108.8 | 108.8 |
(C2C12C11) | 107.0 | 107.0 | 106.2 | 106.3 |
(C12C11C1) | 107.0 | 107.2 | 106.2 | 106.3 |
(C11C1N2) | 108.9 | 108.7 | 108.8 | 108.8 |
Bond angles sum (BAS51), deg | 540.0 | 540.0 | 540.0 | 540.0 |
Bond angles between O, Fe and N atoms, deg | ||||
(O1Mn1N1) | 86.2 | 93.8 | 90.0 | 90.0 |
(O1Mn1N2) | 88.9 | 93.8 | 90.0 | 90.0 |
(O1Mn1N3) | 86.2 | 86.2 | 90.0 | 90.0 |
(O1Mn1N4) | 88.9 | 86.2 | 90.0 | 90.4 |
(O2Mn1N1) | 93.8 | 93.8 | 90.0 | 90.0 |
(O2Mn1N2) | 91.1 | 93.8 | 90.0 | 89.6 |
(O2Mn1N3) | 93.8 | 86.2 | 90.0 | 90.0 |
(O2Mn1N4) | 91.1 | 86.2 | 90.0 | 90.0 |
Bond angles between O and Mn atoms, deg | ||||
(O1Mn1O2) | 180.0 | 169.2 | 180.0 | 180.0 |
Complex | Calculated Using DFT | Charges on the Atoms in Electron Charge Units (ē) | <S**2> a | ||||
---|---|---|---|---|---|---|---|
Mn1 | N1 (N3) | N2 (N4) | O1 | O2 | |||
[Mn(P)(O)2] | B3PW91/TZVP | 0.2002 | −0.3617 (−0.3617) | −0.3561 (−0.3561) | −0.3698 | −0.4155 | 3.9600 |
OPBE/TZVP | −0.0715 | −0.3051 (−0.3024) | −0.3051 (−0.3024) | −0.0999 | −0.0996 | 0.8218 | |
[Mn(Pc)(O)2] | B3PW91/TZVP | −0.1560 | −0.3180 (−0.3180) | −0.3180 (−0.3180) | −0.2483 | −0.2483 | 0.7803 |
OPBE/TZVP | −0.1752 | −0.2816 (−0.2816) | −0.2817 (−0.2817) | −0.1493 | −0.1500 | 0.7668 |
Complex | DFT Version | ΔH0f, 298, kJ/mol | S0f, 298, J/mol ∙ K | ΔG0f, 298, kJ/mol |
---|---|---|---|---|
[Mn(P)(O)2] | OPBE/TZVP | 264.9 | 769.8 | 488.3 |
B3PW91/TZVP | 689.7 | 759.4 | 916.2 | |
[Mn(Pc)(O)2] | OPBE/TZVP | 151.1 | 1129.2 | 422.8 |
B3PW91/TZVP | 756.8 | 1123.2 | 1030.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chachkov, D.V.; Mikhailov, O.V. DFT Method Used for Prediction of Molecular and Electronic Structures of Mn(VI) Macrocyclic Complexes with Porhyrazine/Phthalocyanine and Two Oxo Ligands. Materials 2023, 16, 2394. https://doi.org/10.3390/ma16062394
Chachkov DV, Mikhailov OV. DFT Method Used for Prediction of Molecular and Electronic Structures of Mn(VI) Macrocyclic Complexes with Porhyrazine/Phthalocyanine and Two Oxo Ligands. Materials. 2023; 16(6):2394. https://doi.org/10.3390/ma16062394
Chicago/Turabian StyleChachkov, Denis V., and Oleg V. Mikhailov. 2023. "DFT Method Used for Prediction of Molecular and Electronic Structures of Mn(VI) Macrocyclic Complexes with Porhyrazine/Phthalocyanine and Two Oxo Ligands" Materials 16, no. 6: 2394. https://doi.org/10.3390/ma16062394
APA StyleChachkov, D. V., & Mikhailov, O. V. (2023). DFT Method Used for Prediction of Molecular and Electronic Structures of Mn(VI) Macrocyclic Complexes with Porhyrazine/Phthalocyanine and Two Oxo Ligands. Materials, 16(6), 2394. https://doi.org/10.3390/ma16062394