Experimental Investigation of Eco-Friendly Anhydrous Calcium Sulfate Whisker and Waste Cooking Oil Compound Modified Asphalt Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Compound-Modified Asphalt Binder
2.3. Mix Design of Asphalt Mixtures
2.4. Experimental Methods
2.4.1. High-Temperature Performance Test
Marshall Stability Test
Rutting Test
2.4.2. Low-Temperature Performance Test
Indirect Tensile Test
Three-Point Bending Test
2.4.3. Moisture Susceptibility Test
Immersed Marshall Test
Freeze–Thaw Indirect Tensile Test
2.4.4. Fatigue Performance Test
2.4.5. Repeated Freeze–Thaw Cycles Test
2.4.6. Anti-Aging Performance Test
3. Results and Discussion
3.1. High-Temperature Performance
3.1.1. Marshall Stability
3.1.2. Dynamic Stability
3.2. Low-Temperature Performance
3.2.1. Anti-Cracking Performance
3.2.2. Tensile Performance
3.3. Moisture Susceptibility
3.3.1. Marshall Stability after Immersion
3.3.2. Indirect Tensile Strength after Freeze–Thaw Damage
3.4. Fatigue Performance
3.5. Anti-Freezing Performance
3.6. Anti-Aging Performance
4. Conclusions
- (1)
- The dynamic stability of the modified asphalt mixture increases by 97.3% after incorporating 6%ACSW, compared to the base asphalt mixture. ACSW enhanced the high-temperature performance of the base asphalt mixture, which substantially enhanced the anti-rutting resistance of the asphalt mixture at high temperatures.
- (2)
- The flexural tensile strain of the compound-modified asphalt mixture increases by 34.2% and 20.7% after adding 2%WCO, compared to the ACSW modified and base asphalt mixtures. WCO had a beneficial effect on the low-temperature performance of the asphalt mixture. WCO compensated for the dramatic reduction in the low-temperature tensile strain of the ACSW single-modified asphalt mixture.
- (3)
- The indirect tensile strength residual ratio after the freeze–thaw, and fatigue life of the 6%ACSW and 2%WCO compound-modified asphalt mixture increased by 9.6% and 44%, respectively, compared to the base asphalt mixture. The moisture susceptibility and fatigue performance of the asphalt mixture were improved after ACSW and WCO compound modification.
- (4)
- The Marshall stability and indirect tensile strength ratio loss rate of 6%ACSW and 2%WCO compound-modified asphalt mixture after repeated freeze-thaw cycles were 10.9% and 5.7% lower than those of the base asphalt mixture. The aging Marshall stability ratio and aging indirect tensile strength ratio of all compound-modified asphalt mixtures were below those of the base asphalt mixture. After repeated freeze–thaw cycles and long-term aging, the ACSW and WCO compound-modified asphalt mixtures changed less than that of the base asphalt mixture.
- (5)
- Adding an appropriate amount of ACSW and WCO is a feasible way to improve asphalt mixture performance. Comprehensively considering the high- and low-temperature performance, moisture susceptibility, fatigue, anti-freezing, and anti-aging properties, we found 6%ACSW and 2%WCO compound modification to be the best option to improve asphalt mixture performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, G.P.; Yao, D.; Gong, X.B.; Yu, H.N.; Li, N.Y. Performance evaluation and field application of hard asphalt concrete under heavy traffic conditions. Constr. Build. Mater. 2019, 228, 116729. [Google Scholar] [CrossRef]
- Pokorski, P.; Radziszewski, P.; Sarnowski, M. Study of high-temperature properties of asphalt mixtures used for bridge pavement with concrete deck. Materials 2021, 14, 4238. [Google Scholar] [CrossRef]
- Zeng, G.D.; Wu, W.J.; Li, J.C.; Xu, Q.S.; Li, X.H.; Yan, X.P.; Han, Y.; Wei, J.C. Comparative study on road performance of low-grade hard asphalt and mixture in China and France. Coatings 2022, 12, 270. [Google Scholar] [CrossRef]
- Li, H.Y.; Jiang, H.L.; Zhang, W.W.; Liu, P.; Wang, S.S.; Wang, F.; Zhang, J.Z.; Yao, Z.Y. Laboratory and field investigation of the feasibility of crumb rubber waste application to improve the flexibility of anti-rutting performance of asphalt pavement. Materials 2018, 11, 1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreedhar, S.; Coleri, E. The effect of long-term aging on fatigue cracking resistance of asphalt mixtures. Int. J. Pavement Eng. 2022, 23, 308–320. [Google Scholar] [CrossRef]
- Wu, X.R.; Zheng, N.X.; Lei, J.N. Influencing factors and mechanism for the attenuation of the skid resistance for bauxite clinker-asphalt mixtures. Constr. Build. Mater. 2021, 283, 122670. [Google Scholar] [CrossRef]
- Liu, K.; Huang, M.Y.; Wang, F.; Liang, W.; Zhang, H.B. Quantitative Analysis of Mechanical Strength of Three-Phase Rigid Polyurethane Foam Composites Immersed with Water. J. Mater. Civil Eng. 2023, 35, 04022423. [Google Scholar] [CrossRef]
- Cheng, X.P.; Liu, Y.M.; Ren, W.Y.; Huang, K. Performance evaluation of asphalt rubber mixture with additives. Materials 2019, 12, 1200. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Wang, H.; He, L.; Zhao, Y.L.; Huang, X.M.; Chen, J. Property characterization of asphalt binders and mixtures modified by different crumb rubbers. J. Mater. Civ. Eng. 2017, 29, 7. [Google Scholar] [CrossRef]
- Chen, Z.N.; Chen, Z.G.; Yi, J.Y.; Feng, D.C. Application of corn stalk fibers in SMA mixtures. J. Mater. Civ. Eng. 2021, 33, 7. [Google Scholar] [CrossRef]
- Liu, J.Y.; Li, Z.Z.; Chen, H.X.; Guan, B.W.; Liu, K.P. Investigation of cotton straw fibers for asphalt mixtures. J. Mater. Civ. Eng. 2020, 32, 5. [Google Scholar] [CrossRef]
- Boura, S.A.; Hesami, S. Laboratory evaluation of the performance of asphalt mixtures containing biomass fillers. Road Mater. Pavement 2020, 21, 2040–2053. [Google Scholar] [CrossRef]
- Perez Perez, I.; Rodriguez Pasandin, A.M.; Pais, J.C.; Alves Pereira, P.A. Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures. J. Clean. Prod. 2019, 220, 87–98. [Google Scholar] [CrossRef]
- Rosales, J.; Perez, S.M.; Cabrera, M.; Gazquez, M.J.; Bolivar, J.P.; de Brito, J.; Agrela, F. Treated phosphogypsum as an alternative set regulator and mineral addition in cement production. J. Clean. Prod. 2020, 244, 118752. [Google Scholar] [CrossRef]
- Wu, F.H.; Ren, Y.C.; Qu, G.F.; Liu, S.; Chen, B.J.; Liu, X.X.; Zhao, C.Y.; Li, J.Y. Utilization path of bulk industrial solid waste: A review on the multi-directional resource utilization path of phosphogypsum. J. Environ. Manag. 2022, 313, 114957. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.S.; Yan, Y. Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar. J. Clean. Prod. 2016, 127, 204–213. [Google Scholar] [CrossRef]
- Rychkov, V.N.; Kirillov, E.V.; Kirillov, S.V.; Semenishchev, V.S.; Bunkov, G.M.; Botalov, M.S.; Smyshlyaev, D.V.; Malyshev, A.S. Recovery of rare earth elements from phosphogypsum. J. Clean. Prod. 2018, 196, 674–681. [Google Scholar] [CrossRef]
- Tan, H.B.; Dong, F.Q.; Bian, L.; He, X.C.; Liu, J.F. Preparation of anhydrous calcium sulfate whiskers from phosphogypsum in H2O-H2SO4 autoclave-free hydrothermal system. Mater. Trans. 2017, 58, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Z.; Chen, D.Y.; Zhang, K.K. Preparation, characterization, and formation mechanism of calcium sulfate hemihydrate whiskers. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2018, 33, 1407–1415. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.Y.; Shi, W.J.; Qin, J.; Lu, Q.; Tian, Y.Z. Synthesis of calcium sulphate whisker from phosphogypsum by hydrothermal method. Environ. Prot. Chem. Ind. 2014, 34, 141–144. [Google Scholar]
- Fan, H.; Song, X.F.; Xu, Y.X.; Yu, J.G. Insights into the modification for improving the surface property of calcium sulfate whisker: Experimental and DFT simulation study. Appl. Surf. Sci. 2019, 478, 594–600. [Google Scholar] [CrossRef]
- Liu, M.H.; Wang, X.Y.; Liu, X.; Jia, S.Y. Study on modification effect of calcium sulfate whiskers on stone powder content of manufactured sand concrete. China Civil Eng. J. 2021, 54, 56–64. [Google Scholar]
- Cheng, X.W.; Dong, Q.G.; Li, Z.Y.; Guo, X.Y. High-temperature mechanical properties of calcium sulfate whisker-reinforced high-alumina cement. Mag. Concr. Res. 2020, 72, 55–67. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Y.L. Comparative study on pavement performance of asphalt mixtures modified by calcium sulfate whisker and calcium carbonate whisker. Coatings 2022, 12, 1513. [Google Scholar] [CrossRef]
- Guan, B.W.; Liu, J.N.; Wu, J.Y.; Liu, J.Y.; Tian, H.T.; Huang, T.B.; Liu, C.C.; Ren, T. Investigation of the performance of the ecofriendly fiber-reinforced asphalt mixture as a sustainable pavement material. Adv. Mater. Sci. Eng. 2019, 2019, 6361032. [Google Scholar] [CrossRef] [Green Version]
- Li, G.Y.; Li, J.F.; Gao, Y.; Liu, Y.Q. Research on temperature sensitivity and viscosity of calcium sulphate whisker modified asphalt. New Chem. Mater. 2017, 45, 235–237. [Google Scholar]
- Fan, T.T.; Si, C.D.; Zhang, Y.F.; Zhu, Y.; Li, S. Optimization design of asphalt mixture composite reinforced with calcium sulfate anhydrous whisker and polyester fiber based on response surface methodology. Materials 2023, 16, 594. [Google Scholar] [CrossRef]
- Fan, T.T.; Wang, X.S.; Gao, Y.; Zhang, X.Y. Investigating the interaction mechanism and effect of different calcium sulfate whiskers on performance of asphalt binder. Constr. Build. Mater. 2019, 224, 515–533. [Google Scholar] [CrossRef]
- Zhang, H.M.; Ozturk, U.A.; Zhou, D.Q.; Qiu, Y.M.; Wu, Q. How to increase the recovery rate for waste cooking oil-to-biofuel conversion: A comparison of recycling modes in China and Japan. Ecol. Indicators 2015, 51, 146–150. [Google Scholar] [CrossRef]
- Zhang, H.M.; Ozturk, U.A.; Wang, Q.W.; Zhao, Z.Y. Biodiesel produced by waste cooking oil: Review of recycling modes in China, the US and Japan. Renew. Sust. Energ. Rev. 2014, 38, 677–685. [Google Scholar] [CrossRef]
- Li, H.B.; Dong, B.; Wang, W.J.; Zhao, G.; Guo, P.; Ma, Q.W. Effect of waste engine oil and waste cooking oil on performance improvement of aged asphalt. Appl. Sci. 2019, 9, 1767. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Wang, H.N.; Wang, H.M.; Kazemi, M.; Fini, E. Research progress on resource utilization of waste cooking oil in asphalt materials: A state-of-the-art review. J. Clean. Prod. 2023, 385, 135427. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, Z.Y.; Xie, Q.L.; Fang, J.J.; Hu, Y.C.; Lu, M.Z.; Xia, F.; Nie, Y.; Ji, J.B. Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate. J. Clean. Prod. 2018, 186, 1021–1030. [Google Scholar] [CrossRef]
- Cai, D.L.; Yue, X.; Hao, B.; Ma, P.C. A sustainable poly (vinyl chloride) plasticizer derivated from waste cooking oil. J. Clean. Prod. 2020, 274, 122781. [Google Scholar] [CrossRef]
- Niu, D.Y.; Xie, X.W.; Zhang, Z.; Niu, Y.H.; Yang, Z.X. Influence of binary waste mixtures on road performance of asphalt and asphalt mixture. J. Clean. Prod. 2021, 298, 126842. [Google Scholar] [CrossRef]
- Yan, K.Z.; Li, Y.R.; Long, Z.W.; You, L.Y.; Wang, M.; Zhang, M.; Diab, A. Mechanical behaviors of asphalt mixtures modified with European rock bitumen and waste cooking oil. Constr. Build. Mater. 2022, 319, 125909. [Google Scholar] [CrossRef]
- Yan, K.Z.; Lan, H.Z.; Duan, Z.; Liu, W.Y.; You, L.Y.; Wu, S.H.; Miljkovic, M. Mechanical performance of asphalt rejuvenated with various vegetable oils. Constr. Build. Mater. 2021, 293, 123485. [Google Scholar] [CrossRef]
- Luo, Y.F.; Zhang, K. Review on performance of asphalt and asphalt mixture with waste cooking oil. Materials 2023, 16, 1341. [Google Scholar] [CrossRef] [PubMed]
- JTG F40-2004; Technical Specification for Construction of Highway Asphalt Pavements. Institute of Highway Science, Ministry of Communications, Ministry of Transport of the People’s Republic of China: Beijing, China, 2004. (In Chinese)
- JTG E42-2005; Test Methods of Aggregate for Highway Engineering. Institute of Highway Science, Ministry of Communications, Ministry of Transport of the People’s Republic of China: Beijing, China, 2005. (In Chinese)
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Institute of Highway Science, Ministry of Communications, Ministry of Transport of the People’s Republic of China: Beijing, China, 2011. (In Chinese)
- ASTM D7460; Standard Test Method for Determining Fatigue Failure of Compacted Asphalt Concrete Subjected to Repeated Flexural Bending. ASTM International: West Conshohocken, PA, USA, 2010.
- Fan, T.T.; Wang, X.S. Influence of calcium sulfate whisker on the high temperature performance of asphalt binder. Petrol. Sci. Technol. 2020, 38, 303–308. [Google Scholar] [CrossRef]
- Attaelmanan, M.; Feng, C.P.; Al, A.H. Laboratory evaluation of HMA with high density polyethylene as a modifier. Constr. Build. Mater. 2011, 25, 2764–2770. [Google Scholar] [CrossRef]
- Al, A.H.; Tan, Y.Q.; Hameed, A.T. Starch as a modifier for asphalt paving materials. Constr. Build. Mater. 2011, 25, 14–20. [Google Scholar]
Property | Unit | Result | Specification Requirement [39] |
---|---|---|---|
Penetration (25 °C) | 0.1 mm | 75.7 | 60–80 |
Ductility (10 °C) | cm | 23.8 | ≥15 |
Softening point | °C | 47.1 | ≥45 |
Penetration index | / | −0.62 | −1.5~1.0 |
Rotational viscosity (135 °C) | Pa·s | 0.307 | / |
RTFOT Quality loss (163 °C) | % | 0.27 | <±0.8 |
RTFOT Residual penetration ratio (25 °C) | % | 67.6 | >61 |
163 °C RTFOT Residual ductility (10 °C) | cm | 8.9 | >6 |
Project | Unit | Physical Property |
---|---|---|
Appearance | / | White flocculent powder |
Whiteness | % | ≥92 |
Diameter | μm | 1–4 |
Length | μm | 10–30 |
Density | g·cm−3 | 2.69 |
Loose density | g·cm−3 | 0.3–0.65 |
Extension strength | GPa | 20.5 |
Elasticity modulus | GPa | 178 |
Melting point | °C | 1450 |
Heat resistance | °C | 1000 |
PH | / | 7 ± 0.5 |
Property | Unit | Value |
---|---|---|
Acid value | mg KOH/gm | 3.55 |
Density (15 °C) | gm/cm3 | 0.91 |
Viscosity (25 °C) | Pa·s | 0.22 |
Moisture content | % | 0.34 |
Appearance | - | Brown-yellow greasy liquid |
Index | Test Result | Specification Requirement [39] | ||
---|---|---|---|---|
5–10 mm | 10–15 mm | |||
Coarse aggregate | Crushed value/% | / | 12.5 | ≤26 |
Wear loss rate/% | 10.2 | 10.7 | ≤28 | |
Apparent relative density | 3.11 | 3.08 | ≥2.6 | |
Water absorption rate/% | 1.13 | 0.56 | ≤2 | |
Ruggedness/% | 4 | 4 | ≤12 | |
Needle and flake particles content/% | 7.5 | 6.3 | ≤15 | |
<0.075 mm particles content/% | 0.8 | 0.5 | ≤1 | |
Soft stone content/% | 1.8 | 1.9 | ≤3 | |
Adhesion | / | Level 4 | ≥Level 4 | |
Polished stone value | / | 47 | ≥42 | |
Fine aggregate | Apparent relative density | 2.61 | ≥2.5 | |
Ruggedness/% | 3.7 | ≤12 | ||
Mud content (<0.075 mm) | 1.9 | ≤3 | ||
Sand equivalent | 74.8 | ≥60 | ||
Mineral filler | Apparent density/t/m3 | 2.73 | ≥2.50 | |
Water content/% | 0.21 | ≤1 | ||
Hydrophilic coefficient | 0.77 | <1 | ||
Plasticity index/% | 2.6 | <4 | ||
Appearance | No agglomeration | No agglomeration |
Asphalt Binder Type | Abbreviation | Penetration/0.1 mm | Ductility (10 °C)/cm | Softening Point/°C | Viscosity (135 °C)/Pa·s |
---|---|---|---|---|---|
Base asphalt | #70 | 75.7 | 23.8 | 47.1 | 0.307 |
6%ACSW modified asphalt | 6W | 50.3 | 6.6 | 57.4 | 0.659 |
6%ACSW and 1%WCO compound-modified asphalt | 6W1O | 54.9 | 11.7 | 56.1 | 0.588 |
6%ACSW and 2%WCO compound-modified asphalt | 6W2O | 60.9 | 23.1 | 54.6 | 0.534 |
8%ACSW and 2%WCO compound-modified asphalt | 8W2O | 59 | 19 | 55.8 | 0.578 |
Asphalt Mixture Type | #70 | 6W | 6W1O | 6W2O | 8W2O |
---|---|---|---|---|---|
OAC/% | 4.24 | 4.58 | 4.45 | 4.33 | 4.41 |
Bulk volume relative density | 2.463 | 2.414 | 2.392 | 2.371 | 2.388 |
Volume of air voids (VV)/% | 4.53 | 4.16 | 4.21 | 4.24 | 4.18 |
Voids in mineral aggregate (VMA)/% | 15.31 | 14.63 | 14.87 | 15.16 | 15.07 |
Voids filled with asphalt (VFA)/% | 70.41 | 71.57 | 71.69 | 72.03 | 72.26 |
Marshall stability/kN | 9.12 | 11.07 | 10.63 | 10.16 | 10.39 |
Flow value/mm | 3.34 | 2.76 | 2.96 | 3.12 | 3.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, Z.; Luo, H. Experimental Investigation of Eco-Friendly Anhydrous Calcium Sulfate Whisker and Waste Cooking Oil Compound Modified Asphalt Mixture. Materials 2023, 16, 2409. https://doi.org/10.3390/ma16062409
Liu Y, Yang Z, Luo H. Experimental Investigation of Eco-Friendly Anhydrous Calcium Sulfate Whisker and Waste Cooking Oil Compound Modified Asphalt Mixture. Materials. 2023; 16(6):2409. https://doi.org/10.3390/ma16062409
Chicago/Turabian StyleLiu, Yutong, Zeliang Yang, and Hui Luo. 2023. "Experimental Investigation of Eco-Friendly Anhydrous Calcium Sulfate Whisker and Waste Cooking Oil Compound Modified Asphalt Mixture" Materials 16, no. 6: 2409. https://doi.org/10.3390/ma16062409
APA StyleLiu, Y., Yang, Z., & Luo, H. (2023). Experimental Investigation of Eco-Friendly Anhydrous Calcium Sulfate Whisker and Waste Cooking Oil Compound Modified Asphalt Mixture. Materials, 16(6), 2409. https://doi.org/10.3390/ma16062409