Modified Silica Nanoparticles from Rice Husk Supported on Polylactic Acid as Adsorptive Membranes for Dye Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SiO2 from Rice Husk Synthesis (RH)
2.3. SiO2 by Sol–Gel Synthesis (SG)
2.4. SiO2 Surface Modification with Trimethylsilyl Chloride (TMSCl)
2.5. PLA:SiO2 Silanized Fibers
2.6. Characterizations
2.7. Rhodamine B Adsorption Assays
2.7.1. SiO2 Nanoparticles
2.7.2. PLA:SiO2 Sil Membranes
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rincón Joya, M.; Barba Ortega, J.; Malafatti, J.O.D.; Paris, E.C. Evaluation of Photocatalytic Activity in Water Pollutants and Cytotoxic Response of α-Fe2O3 Nanoparticles. ACS Omega 2019, 4, 17477–17486. [Google Scholar] [CrossRef] [Green Version]
- Malafatti, J.O.D.; Moreira, A.J.; Sciena, C.R.; Silva, T.E.M.; Freschic, G.P.G.; Pereira, E.C.; Paris, E.C. Prozac® Removal Promoted by HAP:Nb2O5 Nanoparticles System: By Products, Mechanism, and Cytotoxicity Assessment. J. Environ. Chem. Eng. 2020, 9, 10482. [Google Scholar] [CrossRef]
- Ali, I.; Asim, M.; Khan, T.A. Low Cost Adsorbents for the Removal of Organic Pollutants from Wastewater. J. Environ. Manag. 2012, 113, 170–183. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Mansa, R.F.; Sipaut, C.S.; Rahman, I.A.; Yusof, N.S.M.; Jafarzadeh, M. Preparation of Glycine–Modified Silica Nanoparticles for the Adsorption of Malachite Green Dye. J. Porous Mater. 2016, 23, 35–46. [Google Scholar] [CrossRef]
- Srhir, B.; Rahali, A.; Elkhattabi, O.; Belhamidi, S.; Chhiti, Y.; Chlihi, K. Dielectric Study of the Adsorption of Cetylpyridinium and Phenol onto Activated Carbon. Microporous Mesoporous Mater. 2022, 340, 112036. [Google Scholar] [CrossRef]
- Laksaci, H.; Belhamdi, B.; Khelifi, O.; Khelifi, A.; Trari, M. Elimination of Amoxicillin by Adsorption on Coffee Waste Based Activated Carbon. J. Mol. Struct. 2022, 1274, 134500. [Google Scholar] [CrossRef]
- Boulika, H.; El Hajam, M.; Hajji Nabih, M.; Riffi Karim, I.; Idrissi Kandri, N.; Zerouale, A. Definitive Screening Design Applied to Cationic & Anionic Adsorption Dyes on Almond Shells Activated Carbon: Isotherm, Kinetic and Thermodynamic Studies. Mater. Today Proc. 2022, 72, 3336–3346. [Google Scholar] [CrossRef]
- Paris, E.C.; Espinosa, J.W.M.; de Lazaro, S.; Lima, R.C.; Joya, M.R.; Pizani, P.S.; Leite, E.R.; Souza, A.G.; Varela, J.A.; Longo, E. Er3+ as Marker for Order-Disorder Determination in the PbTiO3 System. Chem. Phys. 2007, 335, 7–14. [Google Scholar] [CrossRef]
- Alves, M.C.F.; Souza, S.C.; Silva, M.R.S.; Paris, E.C.; Lima, S.J.G.; Gomes, R.M.; Longo, E.; De Souza, A.G.; Garcia Dos Santos, I.M. Thermal Analysis Applied in the Crystallization Study of SrSnO3. J. Therm. Anal. Calorim. 2009, 97, 179–183. [Google Scholar] [CrossRef]
- Raba-Páez, A.M.; Malafatti, J.O.D.; Parra-Vargas, C.A.; Paris, E.C.; Rincón-Joya, M. Effect of Tungsten Doping on the Structural, Morphological and Bactericidal Properties of Nanostructured CuO. PLoS ONE 2020, 15, e0239868. [Google Scholar] [CrossRef]
- Malafatti, J.O.D.; Ruellas, T.M.D.O.; Meirelles, M.R.; Thomazi, A.C.; Renda, C.G.; Paris, E.C. Nanocarriers of Eu3+ Doped Silica Nanoparticles Modified by APTES for Luminescent Monitoring of Cloxacillin. AIMS Mater. Sci. 2021, 8, 760–775. [Google Scholar] [CrossRef]
- Dos Santos, E.G.; De Alsina, O.L.S.; Da Silva, F.L.H. Desempenho de Biomassas Na Adsorção de Hidrocarbonetos Leves Em Efluentes Aquosos. Quim. Nova 2007, 30, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Mascarenhas, B.C.; Tavares, F.A.; Paris, E.C. Functionalized Faujasite Zeolite Immobilized on Poly(Lactic Acid) Composite Fibers to Remove Dyes from Aqueous Media. J. Appl. Polym. Sci. 2020, 137, 48561. [Google Scholar] [CrossRef]
- Paris, E.C.; Malafatti, J.O.D.; Musetti, H.C.; Manzoli, A.; Zenatti, A.; Escote, M.T. Faujasite Zeolite Decorated with Cobalt Ferrite Nanoparticles for Improving Removal and Reuse in Pb2+ Ions Adsorption. Chin. J. Chem. Eng. 2020, 28, 1884–1890. [Google Scholar] [CrossRef]
- Atia, A.A.; Donia, A.M.; Al-Amrani, W.A. Adsorption/Desorption Behavior of Acid Orange 10 on Magnetic Silica Modified with Amine Groups. Chem. Eng. J. 2009, 150, 55–62. [Google Scholar] [CrossRef]
- Ebner, A.D.; Ritter, J.A.; Navratil, J.D. Adsorption of Cesium, Strontium, and Cobalt Ions on Magnetite and a Magnetite—Silica Composite. Ind. Eng. Chem. Res. 2001, 40, 1615–1623. [Google Scholar] [CrossRef]
- Dutta, R.; Nagarjuna, T.V.; Mandavgane, S.A.; Ekhe, J.D. Ultrafast Removal of Cationic Dye Using Agrowaste-Derived Mesoporous Adsorbent. Ind. Eng. Chem. Res. 2014, 53, 18558–18567. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, C.; Wang, H.; Xie, S.; Zhou, J.; Fang, H. Synergistic Removal of Organic Pollutants by Co-Doped MIL-53(Al) Composite through the Integrated Adsorption/Photocatalysis. J. Solid State Chem. 2022, 316, 123582. [Google Scholar] [CrossRef]
- Ahmadian, M.; Derakhshankhah, H.; Jaymand, M. Recent Advances in Adsorption of Environmental Pollutants Using Metal–Organic Frameworks-Based Hydrogels. Int. J. Biol. Macromol. 2023, 231, 123333. [Google Scholar] [CrossRef]
- Chaves, M.R.M.; Dockal, E.R.; Souza, R.C.R.; Büchler, P.M. Biogenic Modified Silica as a Sorbent of Cadmium Ions: Preparation and Characterization. Environ. Technol. 2009, 30, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.A.; Padavettan, V. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocompositesa Review. J. Nanomater. 2012, 2012, 132424. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, G.; Wang, S.; Peng, J.; Cui, W. Cation-Functionalized Silica Nanoparticle as an Adsorbent to Selectively Adsorb Anionic Dye from Aqueous Solutions. Environ. Prog. Sustain. Energy 2016, 35, 1070–1077. [Google Scholar] [CrossRef]
- Rostamian, R.; Najafi, M.; Rafati, A.A. Synthesis and Characterization of Thiol-Functionalized Silica Nano Hollow Sphere as a Novel Adsorbent for Removal of Poisonous Heavy Metal Ions from Water: Kinetics, Isotherms and Error Analysis. Chem. Eng. J. 2011, 171, 1004–1011. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Shao, Q. Porous Silica and Carbon Derived Materials from Rice Husk Pyrolysis Char. Microporous Mesoporous Mater. 2014, 188, 46–76. [Google Scholar] [CrossRef]
- Singh, L.P.; Bhattacharyya, S.K.; Kumar, R.; Mishra, G.; Sharma, U.; Singh, G.; Ahalawat, S. Sol-Gel Processing of Silica Nanoparticles and Their Applications. Adv. Colloid Interface Sci. 2014, 214, 17–37. [Google Scholar] [CrossRef]
- Ponce, J.; da Silva Andrade, J.G.; dos Santos, L.N.; Bulla, M.K.; Barros, B.C.B.; Favaro, S.L.; Hioka, N.; Caetano, W.; Batistela, V.R. Alkali Pretreated Sugarcane Bagasse, Rice Husk and Corn Husk Wastes as Lignocellulosic Biosorbents for Dyes. Carbohydr. Polym. Technol. Appl. 2021, 2, 100061. [Google Scholar] [CrossRef]
- Soltani, N.; Bahrami, A.; Pech-Canul, M.I.; González, L.A. Review on the Physicochemical Treatments of Rice Husk for Production of Advanced Materials. Chem. Eng. J. 2015, 264, 899–935. [Google Scholar] [CrossRef]
- Athinarayanan, J.; Periasamy, V.S.; Alhazmi, M.; Alatiah, K.A.; Alshatwi, A.A. Synthesis of Biogenic Silica Nanoparticles from Rice Husks for Biomedical Applications. Ceram. Int. 2015, 41, 275–281. [Google Scholar] [CrossRef]
- Chumee, J.; Grisdanurak, N.; Neramittagapong, S.; Wittayakun, J. Characterization of AlMCM-41 Synthesized with Rice Husk Silica and Utilization as Supports for Platinum-Iron Catalysts. Braz. J. Chem. Eng. 2009, 26, 367–373. [Google Scholar] [CrossRef]
- Xiong, L.; Sekiya, E.H.; Sujaridworakun, P.; Wada, S.; Saito, K. Burning Temperature Dependence of Rice Husk Ashes in Structure and Property. J. Met. Mater. Miner. 2009, 19, 95–99. [Google Scholar]
- Taha, A.A.; Wu, Y.-N.; Wang, H.; Li, F. Preparation and Application of Functionalized Cellulose Acetate/Silica Composite Nanofibrous Membrane via Electrospinning for Cr(VI) Ion Removal from Aqueous Solution. J. Environ. Manag. 2012, 112, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.A.; Ogale, S.B.; Vijayamohanan, K.P. Tuning the Hydrophobic Properties of Silica Particles by Surface Silanization Using Mixed Self-Assembled Monolayers. J. Colloid Interface Sci. 2008, 318, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Wahyuningsih, K.; Yuliani, S. Hoerudin Characteristics of Silica Nanoparticles from Rice Husk as Influenced by Surface Modification with Used Solvent Containing Silane. J. Eng. Technol. Sci. 2021, 53, 210403. [Google Scholar] [CrossRef]
- Roe, B.; Zhang, X. Durable Hydrophobic Textile Fabric Finishing Using Silica Nanoparticles and Mixed Silanes. Text. Res. J. 2009, 79, 1115–1122. [Google Scholar] [CrossRef]
- Velmurugan, P.; Shim, J.; Oh, B.T. Removal of Anionic Dye Using Amine-Functionalized Mesoporous Hollow Shells Prepared from Corn Cob Silica. Res. Chem. Intermed. 2016, 42, 5937–5950. [Google Scholar] [CrossRef]
- Hallaji, H.; Keshtkar, A.R.; Moosavian, M.A. A Novel Electrospun PVA/ZnO Nanofiber Adsorbent for U(VI), Cu(II) and Ni(II) Removal from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2015, 46, 109–118. [Google Scholar] [CrossRef]
- Paris, E.C.; Malafatti, J.O.D.; Moreira, A.J.; Santos, L.C.; Sciena, C.R.; Zenatti, A.; Escote, M.T.; Mastelaro, V.R.; Joya, M.R. CuO Nanoparticles Decorated on Hydroxyapatite/Ferrite Magnetic Support: Photocatalysis, Cytotoxicity, and Antimicrobial Response. Environ. Sci. Pollut. Res. 2022, 29, 41505–41519. [Google Scholar] [CrossRef] [PubMed]
- Paris, E.C.; Malafatti, J.O.D.; Sciena, C.R.; Junior, L.F.N.; Zenatti, A.; Escote, M.T.; Moreira, A.J.; Freschi, G.P.G. Nb2O5 Nanoparticles Decorated with Magnetic Ferrites for Wastewater Photocatalytic Remediation. Environ. Sci. Pollut. Res. 2021, 28, 23731–23741. [Google Scholar] [CrossRef]
- Coutinho, T.C.; Malafatti, J.O.D.; Paris, E.C.; Tardioli, P.W.; Farinas, C.S. Hydroxyapatite-CoFe2O4 Magnetic Nanoparticle Composites for Industrial Enzyme Immobilization, Use, and Recovery. ACS Appl. Nano Mater. 2020, 3, 12334–12345. [Google Scholar] [CrossRef]
- Lopes, M.M.; Coutinho, T.C.; Malafatti, J.O.D.; Paris, E.C.; de Sousa, C.P.; Farinas, C.S. Immobilization of Phytase on Zeolite Modified with Iron(II) for Use in the Animal Feed and Food Industry Sectors. Process Biochem. 2021, 100, 260–271. [Google Scholar] [CrossRef]
- Manzoli, A.; Shimizu, F.M.; Mercante, L.A.; Paris, E.C.; Oliveira, O.N.; Correa, D.S.; Mattoso, L.H.C. Layer-by-Layer Fabrication of AgCl-PANI Hybrid Nanocomposite Films for Electronic Tongues. Phys. Chem. Chem. Phys. 2014, 16, 24275–24281. [Google Scholar] [CrossRef]
- Fonseca, R.D.; Correa, D.S.; Paris, E.C.; Tribuzi, V.; Dev, A.; Voss, T.; Aoki, P.H.B.; Constantino, C.J.L.; Mendonca, C.R. Fabrication of Zinc Oxide Nanowires/Polymer Composites by Two-Photon Polymerization. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 333–337. [Google Scholar] [CrossRef]
- Abuhatab, S.; El-Qanni, A.; Marei, N.N.; Hmoudah, M.; El-Hamouz, A. Sustainable Competitive Adsorption of Methylene Blue and Acid Red 88 from Synthetic Wastewater Using NiO and/or MgO Silicate Based Nanosorbcats: Experimental and Computational Modeling Studies. RSC Adv. 2019, 9, 35483–35498. [Google Scholar] [CrossRef] [Green Version]
- El-Qanni, A.; Nassar, N.N.; Vitale, G. Experimental and Computational Modeling Studies on Silica-Embedded NiO/MgO Nanoparticles for Adsorptive Removal of Organic Pollutants from Wastewater. RSC Adv. 2017, 7, 14021–14038. [Google Scholar] [CrossRef] [Green Version]
- Darvishi Cheshmeh Soltani, R.; Khataee, A.R.; Safari, M.; Joo, S.W. Preparation of Bio-Silica/Chitosan Nanocomposite for Adsorption of a Textile Dye in Aqueous Solutions. Int. Biodeterior. Biodegrad. 2013, 85, 383–391. [Google Scholar] [CrossRef]
- Xu, R.; Jia, M.; Zhang, Y.; Li, F. Sorption of Malachite Green on Vinyl-Modified Mesoporous Poly(Acrylic Acid)/SiO2 Composite Nanofiber Membranes. Microporous Mesoporous Mater. 2012, 149, 111–118. [Google Scholar] [CrossRef]
- Shen, J.; Li, Z.; Wu, Y.-N.; Zhang, B.; Li, F. Dendrimer-Based Preparation of Mesoporous Alumina Nanofibers by Electrospinning and Their Application in Dye Adsorption. Chem. Eng. J. 2015, 264, 48–55. [Google Scholar] [CrossRef]
- Lee, J.J.L.; Ang, B.C.; Andriyana, A.; Shariful, M.I.; Amalina, M.A. Fabrication of PMMA/Zeolite Nanofibrous Membrane through Electrospinning and Its Adsorption Behavior. J. Appl. Polym. Sci. 2017, 134, 1–13. [Google Scholar] [CrossRef]
- Xu, R.; Jia, M.; Li, F.; Wang, H.; Zhang, B.; Qiao, J. Preparation of Mesoporous Poly (Acrylic Acid)/SiO2 Composite Nanofiber Membranes Having Adsorption Capacity for Indigo Carmine Dye. Appl. Phys. A 2012, 106, 747–755. [Google Scholar] [CrossRef]
- Wu, G.; Liu, S.; Jia, H.; Dai, J. Preparation and Properties of Heat Resistant Polylactic Acid (PLA)/Nano-SiO2 Composite Filament. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2016, 31, 164–171. [Google Scholar] [CrossRef]
- Kontou, E.; Georgiopoulos, P.; Niaounakis, M. The Role of Nanofillers on the Degradation Behavior of Polylactic Acid. Polym. Compos. 2012, 33, 282–294. [Google Scholar] [CrossRef]
- Malafatti, J.O.D.; Bernardo, M.P.; Moreira, F.K.V.; Ciol, H.; Inada, N.M.; Mattoso, L.H.C.; Paris, E.C. Electrospun Poly(Lactic Acid) Nanofibers Loaded with Silver Sulfadiazine/[Mg–Al]-Layered Double Hydroxide as an Antimicrobial Wound Dressing. Polym. Adv. Technol. 2020, 31, 1377–1387. [Google Scholar] [CrossRef]
- Malafatti, J.O.D.; Machado, T.; Ruellas, D.O.; Sciena, R.; Paris, E.C. PLA/Starch Biodegradable Fibers Obtained by the Electrospinning Method for Micronutrient Mineral Release. AIMS Mater. Sci. 2023, 10, 200–212. [Google Scholar] [CrossRef]
- Lai, S.M.; Hsieh, Y.T. Preparation and Properties of Polylactic Acid (PLA)/Silica Nanocomposites. J. Macromol. Sci. Part B Phys. 2016, 55, 211–228. [Google Scholar] [CrossRef]
- Cacciotti, I.; Nanni, F. Poly(Lactic) Acid Fibers Loaded with Mesoporous Silica for Potential Applications in the Active Food Packaging. AIP Conf. Proc. 2016, 1738, 270018. [Google Scholar] [CrossRef]
- Qin, Y.; Shen, H.; Han, L.; Zhu, Z.; Pan, F.; Yang, S.; Yin, X. Mechanically Robust Janus Poly(Lactic Acid) Hybrid Fibrous Membranes toward Highly Efficient Switchable Separation of Surfactant-Stabilized Oil/Water Emulsions. ACS Appl. Mater. Interfaces 2020, 12, 50879–50888. [Google Scholar] [CrossRef]
- Deshmukh, P.; Bhatt, J.; Peshwe, D.; Pathak, S. Determination of Silica Activity Index and XRD, SEM and EDS Studies of Amorphous SiO2 Extracted from Rice Husk Ash. Trans. Indian Inst. Met. 2012, 65, 63–70. [Google Scholar] [CrossRef]
- Wittayakun, J.; Khemthong, P.; Prayoonpokarach, S. Synthesis and Characterization of Zeolite NaY from Rice Husk Silica. Korean J. Chem. Eng. 2008, 25, 861–864. [Google Scholar] [CrossRef]
- Stober, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Silva, A.L.P.; Nascimento, R.G.; Arakaki, L.N.H.; Arakaki, T.; Espínola, J.G.P.; Fonseca, M.G. Organofunctionalized Silica Gel as a Support for Lipase. J. Non. Cryst. Solids 2013, 376, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Han, H.; Wang, X.; Zhang, M.; Chen, Y.; Zhai, C.; Song, H.; Deng, J.; Sun, J.; Zhang, C. Utilization of NaP Zeolite Synthesized with Different Silicon Species and NaAlO2 from Coal Fly Ash for the Adsorption of Rhodamine B. J. Hazard. Mater. 2021, 415, 125627. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Li, P.; Che, Y.; Hu, C.; Ran, S.; Shi, P.; Zhang, W. Facile Preparation and Characterization of Nanostructured Bioi Microspheres with Certain Adsorption-Photocatalytic Properties. Mater. Res. 2018, 21. [Google Scholar] [CrossRef] [Green Version]
- Gharbani, P.; Mehrizad, A. Preparation and Characterization of Graphitic Carbon Nitrides/Polyvinylidene Fluoride Adsorptive Membrane Modified with Chitosan for Rhodamine B Dye Removal from Water: Adsorption Isotherms, Kinetics and Thermodynamics. Carbohydr. Polym. 2022, 277, 118860. [Google Scholar] [CrossRef] [PubMed]
- Ugheoke, I.B.; Mamat, O. A Critical Assessment and New Research Directions of Rice Husk Silica Processing Methods and Properties. Maejo Int. J. Sci. Technol. 2012, 6, 430–448. [Google Scholar]
- Wang, W.; Martin, J.C.; Zhang, N.; Ma, C.; Han, A.; Sun, L. Harvesting Silica Nanoparticles from Rice Husks. J. Nanoparticle Res. 2011, 13, 6981–6990. [Google Scholar] [CrossRef]
- Della, V.P.; Hotza, D.; Junkes, J.A.; De Oliveira, A.P.N. Estudo Comparativo Entre Sílica Obtida Por Lixívia Ácida Da Casca de Arroz e Sílica Obtida Por Tratamento Térmico Da Cinza de Casca de Arroz. Quim. Nova 2006, 29, 1175–1179. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Wang, M.; Liu, Q.; Xu, X.; Yuan, L.; Zhao, Y. Novel SiO2@MgxSiyOz Composite with High-Efficiency Adsorption of Rhodamine B in Water. RSC Adv. 2014, 4, 55237–55246. [Google Scholar] [CrossRef]
- Ray, S.; Takafuji, M.; Ihara, H. Peptide-Based Surface Modified Silica Particles: Adsorption Materials for Dye-Loaded Wastewater Treatment. RSC Adv. 2013, 3, 23664–23672. [Google Scholar] [CrossRef]
- Han, H.; Wei, W.; Jiang, Z.; Lu, J.; Zhu, J.; Xie, J. Removal of Cationic Dyes from Aqueous Solution by Adsorption onto Hydrophobic/Hydrophilic Silica Aerogel. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 539–549. [Google Scholar] [CrossRef]
- Shen, J.; Wu, Y.N.; Zhang, B.; Li, F. Adsorption of Rhodamine b Dye by Biomimetic Mesoporous SiO2 Nanosheets. Clean Technol. Environ. Policy 2015, 17, 2289–2298. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Hashimoto, T. Impact of Entanglement Density on Solution Electrospinning: A Phenomenological Model for Fiber Diameter. Macromolecules 2016, 49, 7985–7996. [Google Scholar] [CrossRef]
- Joshiba, G.J.; Kumar, P.S.; Govarthanan, M.; Ngueagni, P.T.; Abilarasu, A.; Carolin, C.F. Investigation of Magnetic Silica Nanocomposite Immobilized Pseudomonas Fluorescens as a Biosorbent for the Effective Sequestration of Rhodamine B from Aqueous Systems. Environ. Pollut. 2021, 269, 116173. [Google Scholar] [CrossRef] [PubMed]
- Maruthapandi, M.; Eswaran, L.; Luong, J.H.T.; Gedanken, A. Sonochemical Preparation of Polyaniline@TiO2 and Polyaniline@SiO2 for the Removal of Anionic and Cationic Dyes. Ultrason. Sonochem. 2020, 62, 104864. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yuan, W.; Al-Deyab, S.S.; Zhang, K.Q. Tuning Porous Silica Nanofibers by Colloid Electrospinning for Dye Adsorption. Appl. Surf. Sci. 2014, 313, 389–395. [Google Scholar] [CrossRef]
Particle Diameter/nm | SSABET /m2 g−1 | AExt /m2 g−1 | APore /m2 g−1 | Dpore /nm | |
---|---|---|---|---|---|
SiO2 | |||||
AC | 16 | 526.1373 | 249.6770 | 276.4603 | 3.26773 |
ACSil | 16 | 278.2454 | 175.4967 | 102.7487 | 4.18450 |
SG | 5 | 536.6674 | 527.2922 | 9.3751 | 4.22250 |
SGSil | 5 | 384.5106 | - | - | 4.01733 |
RH | 14 | 245.8613 | 225.6661 | 20.1952 | 5.12742 |
RHSil | 14 | 202.5582 | - | - | 4.83049 |
Adsorbent | Experimental | Pseudo-First Order | Pseudo-Second Order | ||||
---|---|---|---|---|---|---|---|
PLA:SiO2 | qe mg g−1 | qe mg g−1 | k1 min−1 | R2 | qe mg g−1 | k2 g mg−1 min−1 | R2 |
SGSil | 2.3012 | 2.7158 | 0.02602 | 0.9865 | 2.8893 | 7.20 × 10−3 | 0.9817 |
RHSil | 1.0648 | 1.2956 | 0.01404 | 0.9842 | 1.758 | 3.74 × 10−3 | 0.9775 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malafatti, J.O.D.; Tavares, F.A.; Neves, T.R.; Mascarenhas, B.C.; Quaranta, S.; Paris, E.C. Modified Silica Nanoparticles from Rice Husk Supported on Polylactic Acid as Adsorptive Membranes for Dye Removal. Materials 2023, 16, 2429. https://doi.org/10.3390/ma16062429
Malafatti JOD, Tavares FA, Neves TR, Mascarenhas BC, Quaranta S, Paris EC. Modified Silica Nanoparticles from Rice Husk Supported on Polylactic Acid as Adsorptive Membranes for Dye Removal. Materials. 2023; 16(6):2429. https://doi.org/10.3390/ma16062429
Chicago/Turabian StyleMalafatti, João Otávio Donizette, Francine Aline Tavares, Tainara Ramos Neves, Bruno Cano Mascarenhas, Simone Quaranta, and Elaine Cristina Paris. 2023. "Modified Silica Nanoparticles from Rice Husk Supported on Polylactic Acid as Adsorptive Membranes for Dye Removal" Materials 16, no. 6: 2429. https://doi.org/10.3390/ma16062429
APA StyleMalafatti, J. O. D., Tavares, F. A., Neves, T. R., Mascarenhas, B. C., Quaranta, S., & Paris, E. C. (2023). Modified Silica Nanoparticles from Rice Husk Supported on Polylactic Acid as Adsorptive Membranes for Dye Removal. Materials, 16(6), 2429. https://doi.org/10.3390/ma16062429