Anti-Penetration Performance of Composite Structures with Metal-Packaged Ceramic Interlayer and UHMWPE Laminate
Abstract
:1. Introduction
2. Target Description
3. Experiment Analysis
3.1. Ballistic Test
3.2. Experimental Results and Discussion
4. Numerical Analysis
4.1. Numerical Simulation Model
4.2. Model Verification
4.3. Numerical Results and Discussion
4.3.1. The Anti-Penetration Performance of Studied Target
4.3.2. The Failure Mechanisms of Studied Structure during the Penetration
4.3.3. The Anti-Penetration Performance at Different Impact Positions
5. Conclusions
- (1)
- The composite structure with a metal-packaged ceramic interlayer and UHMWPE laminate effectively resists the impact load of steel projectiles at 592 m/s, and its anti-penetration performance is 50% stronger than that of the traditional composite structure with the same areal density.
- (2)
- The metal-packaged ceramic interlayer absorbs more than one-third of the projectile energy. The metal frame not only provides a sufficiently strong confinement for the ceramic tiles but also limits the growth of ceramic cracks. Therefore, after the penetration, only the ceramic tile which was hit by the projectile in the metal-packaged ceramic interlayer was sufficiently damaged to absorb energy. However, other tiles did not suffer extensive damage, which makes the composite structure maintain high integrity.
- (3)
- Moreover, the UHMWPE laminate absorbs about 39% of the kinetic energy of the projectile through large deformation, which is the highest among all components of the composite structure. By using metal and a UHMWPE composite back plate, it can change the distribution of the impact load in the composite structure, which results in a wider range of circumferential cracks on the top of the fracture cone in the ceramic tile than the target without UHMWPE laminate. Larger circumferential cracks can not only increase the absorbed projectile energy by expanding the crushing range of the ceramic tiles but also prolong the residence time of the projectile on the ceramic surface because it delays the ceramic tiles reaching the tensile limit.
- (4)
- Simulation results reveal that the anti-penetration performance of the composite structure varies with the position of impact, but the difference is no more than 10%. The observed difference is mainly due to the degree of ceramic fragmentation and the deformation of the UHMWPE laminate.
- (5)
- Compared with the metal back plate, the UHMWPE laminate can prevent the fire and ceramic fragments from passing through because the UHMWPE laminate is capable of high elastic recovery ability. In addition, the asymmetrical deformation of the UHMWPE laminate causes notable ballistic deflection. As a result, the UHMWPE laminate can mitigate after-effect damage caused by the projectile penetrating the structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, R.; Wu, C.; Su, Y.; Liu, Z.; Liu, J.; Xu, S. Numerical analysis on impact response of ultra-high strength concrete protected with composite materials against steel ogive-nosed projectile penetration. Compos. Struct. 2019, 220, 861–874. [Google Scholar] [CrossRef]
- Zhang, R.; Qiang, L.S.; Han, B.; Zhao, Z.Y.; Lu, T.J. Ballistic performance of UHMWPE laminated plates and UHMWPE encapsulated aluminum structures: Numerical simulation. Compos. Struct. 2020, 252, 112686. [Google Scholar] [CrossRef]
- Qu, K.; Wu, C.; Liu, J.; Yao, Y.; Deng, Y.; Yi, C. Ballistic performance of multi-layered aluminium and UHMWPE fibre laminate targets subjected to hypervelocity impact by tungsten alloy ball. Compos. Struct. 2020, 253, 112785. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Ryan, S.; Cimpoeru, S.J.; Mouritz, A.P.; Orifici, A.C. The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite. Int. J. Impact Eng. 2015, 75, 174–183. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Russell, B.P. Polyethylene ballistic laminates: Failure mechanics and interface effect. Mater. Des. 2014, 63, 115–125. [Google Scholar] [CrossRef]
- Greenhalgh, E.S.; Bloodworth, V.M.; Iannucci, L.; Pope, D. Fractographic observations on Dyneema composites under ballistic impact. Compos. Part A 2013, 44, 51–62. [Google Scholar] [CrossRef]
- Austin, S.; Brown, A.D.; Escobedo, J.P.; Wang, H.; Kleine, H. The high-velocity impact of Dyneema® and Spectra® laminates: Implementation of a simple thermal softening model. Procedia Eng. 2017, 204, 51–58. [Google Scholar] [CrossRef]
- Stuart, P.; Ulrich, H.; Harm, V.D.W.; Marjolein, J.D. Modeling and Experiments on Ballistic Impact into UHMWPE Yarns Using Flat and Saddle-Nosed Projectiles. Fibers 2017, 5, 8. [Google Scholar]
- Cunniff, P. Dimensionless Parameters for Optimization of Textile Based Body Armor Systems. In Proceedings of the 18th International Symposium on Ballistics, San Antonio, TX, USA, 15–19 November 1999. [Google Scholar]
- Kartikeya, K.; Chouhan, H.; Ram, K.; Prasad, S.; Bhatnagar, N. Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles. Int. J. Impact Eng. 2022, 164, 104211. [Google Scholar] [CrossRef]
- Attwood, J.P.; Khaderi, S.N.; Karthikeyan, K.; Fleck, N.A.; O’Masta, M.R.; Wadley, H.N.G.; Deshpande, V.S. The out-of-plane compressive response of Dyneema® composites. J. Mech. Phys. Solids 2014, 70, 200–226. [Google Scholar] [CrossRef]
- Shen, Z. Study on the Anti-Impact Performance of UHMWPE Laminates and Composite Armors. Ph.D. Thesis, Hunan University, Changsha, China, 2019. [Google Scholar]
- Chocron, S.; Figueroa, E.; King, N.; Kirchdoerfer, T.; Nicholls, A.E.; Sagebiel, E.; Weiss, C.; Freitas, C.J. Modeling and validation of full fabric targets under ballistic impact. Compos. Sci. Technol. 2010, 70, 2012–2022. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, G.Y.; Feng, S.S.; Stronge, W.J. Conical nosed projectile perforation of polyethylene reinforced cross-ply laminates: Effect of fiber lateral displacement. Int. J. Impact Eng. 2018, 118, 39–49. [Google Scholar] [CrossRef]
- Mamivand, M.; Liaghat, G.H. A model for ballistic impact on multi-layer fabric targets. Int. J. Impact Eng. 2010, 37, 806–812. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Y.; Chen, L.; Zhang, S.; Pan, N. Influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene composite laminate. Mater. Des. 2014, 54, 315–322. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Z.; Chen, Z.; Cheng, X.; Wang, Y.; Chen, X.; Liu, J.; Li, B.; Wang, S. Influence of different back laminate layers on ballistic performance of ceramic composite armor. Mater. Des. 2015, 87, 421–427. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Z.; Chen, Z. Design and characteristics of hybrid composite armor subjected to projectile impact. Mater. Des. 2013, 46, 634–639. [Google Scholar] [CrossRef]
- Gooch, W.A. An overview of ceramic armor applications. Ceram. Trans. 2002, 134, 3–21. [Google Scholar]
- Sherman, D.; Ben-Shushan, T. Quasi-Static Impact Damage in Confined Ceramic Tiles. Int. J. Impact Eng. 1998, 21, 245–265. [Google Scholar] [CrossRef]
- Woolsey, P. Ceramic materials screening by residual penetration ballistic testing. In Proceedings of the 13th International Symposium of Ballistics, Stockholm, Sweden, 1–3 June 1992. [Google Scholar]
- Wilkins, M.L. Mechanics of penetration and perforation. Int. J. Eng. Sci. 1978, 16, 793–807. [Google Scholar] [CrossRef]
- Wilkins, M.; Honodel, C.; Sawle, D. An Approach to the Study of Light Armor; California University, Lawrence Radiation Laboratory: Livermore, CA, USA, 1967. [Google Scholar]
- An, X.; Tian, C.; Sun, Q.; Dong, Y. Effects of material of metallic frame on the penetration resistances of ceramic-metal hybrid structures. Def. Technol. 2020, 16, 77–87. [Google Scholar] [CrossRef]
- Tian, C.; An, X.; Sun, Q.; Dong, Y. Experimental and numerical analyses of the penetration resistance of ceramic-metal hybrid structures. Compos. Struct. 2019, 211, 264–272. [Google Scholar] [CrossRef]
- Tian, C.; Sun, Q.; An, X.; Ye, P.; Dong, Y. Influences of ceramic constraint on protection performances of ceramic-metal hybrid structures under impact loads. Int. J. Mech. Sci. 2019, 159, 81–90. [Google Scholar] [CrossRef]
- An, X.; Yang, J.; Tian, C.; Wang, B.; Guo, H.; Dong, Y. Penetration resistance of hybrid metallic honeycomb structures with ceramic insertions against long-rod tungsten projectiles. Compos. Struct. 2018, 189, 488–497. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Javadpour, G.H. Penetration analysis of a projectile in ceramic composite armor. Compos. Struct. 2008, 82, 269–276. [Google Scholar] [CrossRef]
- Guo, X.; Sun, X.; Tian, X.; Weng, G.J.; Ouyang, Q.D.; Zhu, L.L. Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic. Compos. Struct. 2016, 157, 163–173. [Google Scholar] [CrossRef]
- Rahbek, D.B.; Johnsen, B.B. Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles. Int. J. Impact Eng. 2019, 133, 103331–103332. [Google Scholar] [CrossRef]
- Wu, Y.; Tao, X.; Liu, Y.; Zhang, Q.; Xue, Y. Analysis on Deflection of Projectile Penetrating into Composite Concrete Targets. Materials 2022, 15, 7871. [Google Scholar] [CrossRef]
- Slimane, S.A.; Slimane, A.; Guelailia, A.; Boudjemai, A.; Kebdani, S.; Smahat, A.; Mouloud, D. Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding. Mech. Adv. Mater. Struct. 2022, 29, 4487–4505. [Google Scholar] [CrossRef]
- Tian, C. Investigation on Anti-Penetration Mechanism and Optimization Method of Lightweight Metal Encapsulating Ceramic Composite Structures. Ph.D. Thesis, Beijing Institute of Technology, Beijing, China, 2020. [Google Scholar]
- Mrii, A.; Jqz, B.; Rcb, A. Ballistic performance of ceramic and ceramic-metal composite plates with JH1, JH2 and JHB material models. Int. J. Impact Eng. 2020, 137, 103469. [Google Scholar]
- Chen, L.; Zheng, K.; Fang, Q. Effect of strain rate on the dynamic tensile behaviour of UHMWPE fibre laminates. Polym. Test. 2017, 63, 54–64. [Google Scholar] [CrossRef]
- Wen, H.; Yang, W.; Xia, Y. Statistical dynamic tensile strength of UHMWPE-fibers. Polymer 2004, 45, 3729–3734. [Google Scholar]
- Zhang, K.; Li, W.; Wang, X.; Yao, W.; Zhao, C. A constitutive model of the compressive mechanical properties of ultra high molecular weight polyethylene (UHMWPE) at different temperatures and different strain rates. Mater. Res. Express 2019, 6, 125370. [Google Scholar] [CrossRef]
- Xia, Q.; Yan, L.; Feng, X. Numerical Simulation of UHMWPE Fiber Laminated Panel Anti-ballistic Penetration. Sichuan Ordnance J. 2011, 32, 119–121. [Google Scholar]
- Zhang, R.; Han, B.; Lu, T.J. Confinement effects on compressive and ballistic performance of ceramics: A review. Int. Mater. Rev. 2020, 66, 287–312. [Google Scholar] [CrossRef]
Areal Density (kg/m2) | Section (mm) | Front Plate | Metal-Packaged Ceramic Interlayer | Back Plate | UHMWPE Laminate | Ceramic Tiles | |
---|---|---|---|---|---|---|---|
Test Target | 45.24 | Length | 200 | 200 | 200 | 300 | 50 |
Width | 200 | 200 | 200 | 300 | 50 | ||
Depth | 3 | 6 | 1 | 7 | 6 | ||
Reference Target | 46.53 | Length | 200 | 200 | 200 | - | 50 |
Width | 200 | 200 | 200 | - | 50 | ||
Depth | 3 | 6 | 3 | - | 6 |
Num. | Target | Charge (g) | Impact Coordinates * (mm) | Incident Velocity (m/s) | Residual Velocity (m/s) | Residual Mass (g) |
---|---|---|---|---|---|---|
R-1 | Reference Target | 13.5 | (0, 6) | 608 | 379 | 28.00 |
R-2 | 13.5 | (23, 3) | 612 | 398 | 28.32 | |
T-V | Test Target | 14.0 | (8, 0) | 673 | 168 | 29.72 |
T-X | 13.5 | (−2, 8) | 592 | 0 | 28.14 | |
T-O | 13.5 | (−40, 8) | 612 | 339 | 28.74 |
Num. | Impact Coordinates * | Front Plate Perforation Diameter | Back Plate Perforation Diameter | UHMWPE Deformation Diameter | Depth of Bulge on UHMWPE |
---|---|---|---|---|---|
R-1 | (0, 6) | 16 | 24 | - | - |
R-2 | (23, 3) | 16 | 23 | - | - |
T-V | (10, 0) | 14 | 34 | 48 | 35 |
T-X | (−2, 8) | 16 | 43 | 34 | 52 |
T-O | (−40, 8) | 18 | 20 | 30 | 28 |
Parameter | Steel | TC4 |
---|---|---|
Density, ρ (g/cm3) | 7.85 | 4.45 |
Shear modulus, G (GPa) | 77 | 41.9 |
Static yield strength, A (GPa) | 1.54 | 0.9 |
Strain hardening coefficient, B (GPa) | 0.477 | 0.845 |
Strain hardening exponent, n | 0.26 | 0.58 |
Strain rate coefficient, C | 0 | 0.014 |
Thermal softening exponent, m | 1.0 | 0.753 |
Damage constant, D1 | 2.0 | 0.05 |
Damage constant, D2 | 0 | 0.27 |
Damage constant, D3 | 0 | −0.48 |
Damage constant, D4 | 0 | 0.014 |
Damage constant, D5 | 0 | 3.8 |
Parameter | SiC | Parameter | SiC |
---|---|---|---|
Density, ρ (g/cm3) | 3.215 | Maximum tensile pressure strength, T (GPa) | 0.75 |
Shear modulus, G (GPa) | 183 | Pressure at the HEL, PHEL (GPa) | 14.567 |
Intact strength coefficient, A | 0.96 | Damage coefficient, D1 | 0.48 |
Fracture strength coefficient, B | 0.35 | Damage exponent, D2 | 0.48 |
Strain rate coefficient, C | 0.0045 | Bulk modulus, K1 (GPa) | 217.2 |
Fracture strength exponent, M | 1.0 | Pressure coefficient, K2 (GPa) | 0 |
Intact strength exponent, N | 0.65 | Pressure coefficient, K3 (GPa) | 0 |
Parameter | UHMWPE Laminate |
---|---|
Density, ρ (g/cm3) | 0.97 |
Young’s modulus in a-direction, E1 (GPa) | 30.7 |
Young’s modulus in b-direction, E2 (GPa) | 30.7 |
Young’s modulus in c-direction, E3 (GPa) | 1.97 |
Bulk modulus of failed material, Kfail (GPa) | 2.2 |
Longitudinal tensile strength, a-axis, Xt (GPa) | 3.0 |
Transverse tensile strength, b-axis, Yt (GPa) | 3.0 |
Shear strength, ab plane, Sc (GPa) | 0.36 |
Transverse compressive strength, b-axis, Yc (GPa) | 2.5 |
Poisson’s ratio, ba, ν12 | 0.008 |
Poisson’s ratio, ca, ν13 | 0.044 |
Poisson’s ratio, cb, ν23 | 0.044 |
Shear modulus, ab, G12 (GPa) | 0.73 |
Shear modulus, bc, G13 (GPa) | 0.67 |
Shear modulus, ca, G23 (GPa) | 0.67 |
Normal tensile strength, Sn (GPa) | 0.95 |
Transverse shear strength, Syz (GPa) | 0.95 |
Transverse shear strength, Szx (GPa) | 0.95 |
Section | Incident Velocity (m/s) | Residual Velocity (m/s) | ||||||
---|---|---|---|---|---|---|---|---|
T-V | T-X | T-O | R-1 | T-V | T-X | T-O | R-1 | |
Experiment | 673 | 592 | 612 | 608 | 168 | 0 | 339 | 379 |
Simulation | 673 | 592 | 612 | 608 | 165 | 0 | 328 | 367 |
Error | - | - | - | - | 3 | - | 11 | 12 |
Relative error | - | - | - | - | 1.7% | - | 3.2% | 3.1% |
Section | Perforation Diameter of Front Plate (mm) | Depth of the Bulge of the UHMWPE (mm) | ||||||
T-V | T-X | T-O | R-1 | T-V | T-X | T-O | R-1 | |
Experiment | 14 | 16 | 18 | 16 | 35 | 52 | 28 | - |
Simulation | 12.9 | 14.9 | 16.8 | 16.9 | 30.6 | 45.7 | 23.9 | - |
Error | 1.1 | 1.1 | 1.2 | 0.9 | 4.4 | 6.3 | 4.1 | - |
Relative error | 7.8% | 6.9% | 6.7% | 5.6% | 12.6% | 12.1% | 14.6% | - |
Num. | Impact Coordinates * (mm) | Residual Velocity (m/s) | Depth of Bulge on UHMWPE (mm) | UHMWPE Perforation Diameter (mm) |
---|---|---|---|---|
PA-1 | (0, 0) | 0 | 40 | Not penetrated |
PA-2 | (−54, 0) | 44 | 36 | 13 |
PA-3 | (54, 0) | 0 | 42 | Not penetrated |
PB-1 | (−27, 0) | 118 | 36 | 15 |
PB-2 | (27, 0) | 55 | 50 | 13 |
PC-1 | (−27, −27) | 212 | 29 | 15 |
PC-2 | (27, 27) | 174 | 38 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Zhang, L.; Sun, Q.; Ye, P.; Hao, W.; Shi, P.; Dong, Y. Anti-Penetration Performance of Composite Structures with Metal-Packaged Ceramic Interlayer and UHMWPE Laminate. Materials 2023, 16, 2469. https://doi.org/10.3390/ma16062469
Sun X, Zhang L, Sun Q, Ye P, Hao W, Shi P, Dong Y. Anti-Penetration Performance of Composite Structures with Metal-Packaged Ceramic Interlayer and UHMWPE Laminate. Materials. 2023; 16(6):2469. https://doi.org/10.3390/ma16062469
Chicago/Turabian StyleSun, Xin, Longhui Zhang, Qitian Sun, Ping Ye, Wei Hao, Peizhuo Shi, and Yongxiang Dong. 2023. "Anti-Penetration Performance of Composite Structures with Metal-Packaged Ceramic Interlayer and UHMWPE Laminate" Materials 16, no. 6: 2469. https://doi.org/10.3390/ma16062469
APA StyleSun, X., Zhang, L., Sun, Q., Ye, P., Hao, W., Shi, P., & Dong, Y. (2023). Anti-Penetration Performance of Composite Structures with Metal-Packaged Ceramic Interlayer and UHMWPE Laminate. Materials, 16(6), 2469. https://doi.org/10.3390/ma16062469