The Study of Radius End Mills with TiB2 Coating When Milling a Nickel Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cutting Tools and Machined Material
2.2. Investigation of the Cutting Tool Properties
2.3. Application of Wear-Resistant Coatings on Experimental Milling Cutters
3. Results and Discussion
3.1. Structure and Properties of Coatings Deposed to End Mills
3.2. Cutting Capacity of Coated End Mills
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, W.; Ji, W.; Wang, L.; Zheng, L.; Wang, Y. A review on cutting tool technology in machining of Ni-based superalloys. Int. J. Adv. Manuf. Technol. 2020, 110, 2863–2879. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Sinopalnikov, V.A.; Tereshin, M.V.; Gurin, V.D. Control of parameters of the cutting process on the basis of diagnostics of the machine tool and workpiece. Meas. Technol. 2012, 55, 555–558. [Google Scholar] [CrossRef]
- Woiciechowski, S.; Twardowski, P. Tool life and process dynamics in high-speed ball end milling of hardened steel. Procedia CIRP 2012, 1, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.N.; Volosova, M.A.; Fedorov, S.V.; Okunkova, A.A.; Pivkin, P.M.; Peretyagin, P.Y.; Ershov, A. Development of DLC-Coated Solid SiAlON/TiN Ceramic End Mills for Nickel Alloy Machining: Problems and Prospects. Coatings 2021, 11, 532. [Google Scholar] [CrossRef]
- Stebulyanin, M.; Ostrikov, E.; Migranov, M.; Fedorov, S. Improving the Efficiency of Metalworking by the Cutting Tool Rake Surface Texturing and Using the Wear Predictive Evaluation Method on the Case of Turning an Iron–Nickel Alloy. Coatings 2022, 12, 1906. [Google Scholar] [CrossRef]
- Ozel, T.; Biermann, D.; Enomoto, T.; Mativenga, P. Structured and textured cutting tool surfaces for machining applications. CIRP Ann. Manuf. Technol. 2021, 70, 495–518. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Fedorov, S.V. Tool material surface alloying by wide-aperture low-energy high-current electron-beam treatment before wear-resistant coating. Mech. Ind. 2015, 16, 708. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, S.; Swe, M.H.; Kapitanov, A.; Egorov, S. Wear of carbide inserts with complex surface treatment when milling nickel alloy. Mech. Ind. 2017, 18, 710. [Google Scholar] [CrossRef] [Green Version]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Aksenenko, A.; Sitnikov, N.; Oganyan, G.; Seleznev, A.; Shevchenko, S. Effect of adhesion and the wear-resistant layer thickness ratio on mechanical and performance properties of ZrN-(Zr,Al,Si)N coatings. Surf. Coat. Technol. 2019, 357, 218–234. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Milovich, F.; Andreev, N.; Sotova, C.; Kutina, N. Investigation of the influence of the thickness of nanolayers in wear-resistant layers of Ti-TiN-(Ti,Cr,Al)N coating on destruction in the cutting and wear of carbide cutting tools. Surf. Coat. Technol. 2020, 385, 125402. [Google Scholar] [CrossRef]
- Gershman, I.; Mironov, A.; Fox Rabinovich, G.; Muravyeva, T.; Shkalei, I.; Shcherbakova, O.; Torskaya, E.; Fedorov, S.; Endrino, J.L. Secondary Structures on the Friction Surface of Diamond-like Coating. Coatings 2022, 12, 1685. [Google Scholar] [CrossRef]
- Fominski, V.Y.; Grigoriev, S.N.; Celis, J.P.; Romanov, R.I.; Oshurko, V.B. Structure and mechanical properties of W-Se-C/diamond-like carbon and W-Se/diamond-like carbon bi-layer coatings prepared by pulsed laser deposition. Thin Solid Films 2012, 520, 6476–6648. [Google Scholar] [CrossRef]
- Martins, P.S.; Magalhães, P.A.A.; Carneiro, J.R.G.; Talibouya, E.C.; Vieira, V.F. Study of Diamond-Like Carbon coating application on carbide substrate for cutting tools used in the drilling process of an Al–Si alloy at high cutting speeds. Wear 2022, 498–499, 204326. [Google Scholar] [CrossRef]
- Lukaszkowicz, K.; Sondor, J.; Balin, K.; Kubacki, J. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process. Appl. Surf. Sci. 2014, 312, 126–133. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Volosova, M.A.; Grigoriev, S.N.; Vereschaka, A.S. Development of wear-resistant complex for high-speed steel tool when using process of combined cathodic vacuum arc deposition. Procedia CIRP 2013, 9, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.N.; Volosova, M.A.; Fedorov, S.V.; Migranov, M.S.; Mosyanov, M.; Gusev, A.; Okunkova, A.A. The Effectiveness of Diamond-like Carbon a-C:H:Si Coatings in Increasing the Cutting Capability of Radius End Mills When Machining Heat-Resistant Nickel Alloys. Coatings 2022, 12, 206. [Google Scholar] [CrossRef]
- Chowdhury, M.S.I.; Bose, B.; Fox-Rabinovich, G.; Veldhuis, S.C. Investigation of the Wear Performance of TiB2 Coated Cutting Tools during the Machining of Ti6Al4V Alloy. Materials 2021, 14, 2799. [Google Scholar] [CrossRef]
- Brzezinka, T.L.; Rao, J.; Paiva, J.M.; Azkona, I.; Kohlscheen, J.; Fox-Rabinovich, G.S.; Veldhuis, S.C.; Endrino, J.L. Facilitating TiB2 for Filtered Vacuum Cathodic Arc Evaporation. Coatings 2020, 10, 244. [Google Scholar] [CrossRef] [Green Version]
- Žemlička, R.; Jílek, M., Sr.; Jílek, M., Jr.; Lümkemann, A.; Cselle, T.; Bloesch, D.; Vladimír Krsek, V. The new Hybrid LACS® Technology (Lateral ARC and Central Sputtering by Rotating Cathodes). In Proceedings of the Conference: PSE 2018 Garmisch-Partenkirchen, Garmisch-Partenkirchen, Germany, 18 September 2018. [Google Scholar] [CrossRef]
- Polcar, T.; Cavaleiro, A. High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings—Structure and oxidation. Mater. Chem. Phys. 2011, 129, 195–201. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Vereschaka, A.A.; Vereschaka, A.S.; Kutin, A.A. Cutting tools made of layered composite ceramics with nano-scale multilayered coatings. Proc. CIRP 2012, 1, 301–306. [Google Scholar] [CrossRef]
- Ding, X.-Z.; Zeng, X.T.; Liu, Y.C. Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathode arc. Thin Solid Films 2011, 519, 1894–1900. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Sotova, C. Investigation of the influence of the features of the deposition process on the structural features of microparticles in PVD coatings. Vacuum 2022, 202, 111144. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Tabakov, V.; Sitnikov, N.; Andreev, N.; Sviridova, T.; Bublikov, J. Investigation of multicomponent nanolayer coatings based on nitrides of Cr, Mo, Zr, Nb, and Al. Surf. Coat. Technol. 2020, 401, 126258. [Google Scholar] [CrossRef]
- Moufki, A.; Le Coz, G.; Dudzinski, D. End-milling of Inconel 718 Superalloy–An Analytical Modelling. Procedia CIRP 2017, 58, 358–363. [Google Scholar] [CrossRef]
- Parthasarathi, N.L.; Borah, U.; Albert, S.K. Effect of temperature on sliding wear of AISI 316 L(N) stainless steel—Analysis of measured wear and surface roughness of wear tracks. Mater. Des. 2013, 51, 676–682. [Google Scholar] [CrossRef]
- Wainstein, D.; Kovalev, A. Tribooxidation as a Way to Improve the Wear Resistance of Cutting Tools. Coatings 2018, 8, 223. [Google Scholar] [CrossRef] [Green Version]
- Paiva, J.M.; Shalaby, M.A.M.; Chowdhury, M.; Lev Shuster, L.; Chertovskikh, S.; Covelli, D.; Locks, E., Jr.; Stolf, P.; Elfizy, A.; Bork, C.A.S.; et al. Tribological and Wear Performance of Carbide Tools with TiB2 PVD Coating under Varying Machining Conditions of TiAl6V4 Aerospace Alloy. Coatings 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Suslov, E.; Larionov, A.; Kislitsin, S.; Chernov, I.; Stal’tsov, M.; Dikov, A.; Firsova, V. Oxidation of boron-titanium thin film coating during cyclic tests on thermal shock. IOP Conf. Ser. Mater. Sci. Eng. 2020, 1005, 012006. [Google Scholar] [CrossRef]
- Chachuli, S.A.M.; Hamidon, M.N.; Ertuğrul, M.; Mamat, S. Influence of B2O3 Addition on the Properties of TiO2 Thick Film at Various Annealing Temperatures for Hydrogen Sensing. J. Electron. Mater. 2020, 49, 3340–3349. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Diameter | 11.953 mm |
Number of flutes | 4 |
Flute radius | 5.992 mm |
Primary clearance angle | 10.837° |
Secondary clearance angle | 19.212° |
Primary clearance land | 0.9528 mm |
Rake angle | 5.833° |
Characteristic | Measuring Unit | Value |
---|---|---|
Co content | wt% | 9.0 |
HV30 microhardness | ISO 3878 | 1950 ± 50 |
Crack resistance, KIC | MPa·m1/2 | 9.3 |
Tungsten carbide average particle size | µm | 0.4 |
Parameter | Value |
---|---|
Cutting speed VC | 250 m/min |
Milling cutter rotation frequency | 8657 min−1 |
Feed fz | 0.05 mm/tooth |
Depth of cut ap | 0.3 mm |
The inclination angle of the milling cutter β | 40° |
Effective milling cutter diameter deff | 9.19 mm |
Workpiece rotation speed VW | 1.7 m/min |
Coating | Grinding Image | Surface Condition | Parameters |
---|---|---|---|
TiB2 | hTiB2 = 2.5 µm | ||
RA = 0.06 µm RZ = 1.15 µm | |||
HV10 = 34.0 GPa | |||
CrN− ncAlTiN/Si3N4 + TiB2 | hTiB2 = 0.6 µm | ||
hncAlTiN/Si3N4 = 2.0 µm | |||
RA = 0.15 µm RZ = 1.69 µm | |||
HV10 = 38.4 GPa | |||
CrN− ncAlCrN/Si3N4 + TiB2 | hTiB2 = 0.7 µm | ||
hncAlCrN/Si3N4 = 2.0 µm | |||
RA = 0.11 µm RZ = 1.62 µm | |||
HV10 = 37.0 GPa | |||
CrN− ncAlCrN/Si3N4 + DLC | hDLC = 1.0 µm | ||
hncAlCrN/Si3N4 = 1.7 µm | |||
RA = 0.13 µm RZ = 2.01 µm | |||
HV10 = 35.6 GPa |
Coating | 3D Image | Cross Section |
---|---|---|
TiB2 | ||
CrN− ncAlCrN/Si3N4 + DLC |
Coating | 3D Image | Cross Section |
---|---|---|
CrN− ncAlTiN/Si3N4 +TiB2 | ||
CrN− ncAlCrN/Si3N4 +TiB2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoriev, S.; Volosova, M.; Mosyanov, M.; Fedorov, S. The Study of Radius End Mills with TiB2 Coating When Milling a Nickel Alloy. Materials 2023, 16, 2535. https://doi.org/10.3390/ma16062535
Grigoriev S, Volosova M, Mosyanov M, Fedorov S. The Study of Radius End Mills with TiB2 Coating When Milling a Nickel Alloy. Materials. 2023; 16(6):2535. https://doi.org/10.3390/ma16062535
Chicago/Turabian StyleGrigoriev, Sergey, Marina Volosova, Mikhail Mosyanov, and Sergey Fedorov. 2023. "The Study of Radius End Mills with TiB2 Coating When Milling a Nickel Alloy" Materials 16, no. 6: 2535. https://doi.org/10.3390/ma16062535
APA StyleGrigoriev, S., Volosova, M., Mosyanov, M., & Fedorov, S. (2023). The Study of Radius End Mills with TiB2 Coating When Milling a Nickel Alloy. Materials, 16(6), 2535. https://doi.org/10.3390/ma16062535