Suppressing Viscous Fingering in Porous Media with Wetting Gradient
Abstract
:1. Introduction
2. Numerical Method
2.1. Mathematical Model
2.2. Simulation Setup
2.3. Model Verification
3. Results and Discussion
3.1. Effect of Wettability
3.2. Comparison between the Porous Media with and without Wetting Gradient
3.2.1. Effect of Capillary Number
3.2.2. Effect of Viscosity Ratio
3.2.3. Effect of Porosity
3.2.4. Effect of Nonuniformity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simjoo, M.; Dong, Y.; Andrianov, A.; Talanana, M.; Zitha, P.L.J. CT Scan Study of Immiscible Foam Flow in Porous Media for Enhancing Oil Recovery. Ind. Eng. Chem. Res. 2013, 52, 6221–6233. [Google Scholar] [CrossRef]
- Kim, Y.; Wan, J.; Kneafsey, T.J.; Tokunaga, T.K. Dewetting of Silica Surfaces upon Reactions with Supercritical CO2 and Brine: Pore-Scale Studies in Micromodels. Environ. Sci. Technol. 2012, 46, 4228–4235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Kang, Q.; Tao, W. Pore-scale numerical study of multiphase reactive transport processes in cathode catalyst layers of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2021, 46, 13283–13297. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, Q.; Gu, S. Three-dimensional lattice-Boltzmann model for liquid water transport and oxygen diffusion in cathode of polymer electrolyte membrane fuel cell with electrochemical reaction. Electrochim. Acta 2018, 262, 282–296. [Google Scholar] [CrossRef]
- Sauter, C.; Zahn, R.; Wood, V. Understanding Electrolyte Infilling of Lithium Ion Batteries. J. Electrochem. Soc. 2020, 167, 10. [Google Scholar] [CrossRef]
- Kota, A.K.; Kwon, G.; Choi, W.; Mabry, J.M. Hygro-responsive membranes for effective oil-water separation. Nat. Commun. 2012, 3, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paliwal, S.; Panda, D.; Bhaskaran, S.; Vorhauer-Huget, N.; Tsotsas, E.; Surasani, V.K. Lattice Boltzmann method to study the water-oxygen distributions in porous transport layer (ptl) of polymer electrolyte membrane (pem) electrolyser. Int. J. Hydrogen Energy 2021, 46, 22747–22762. [Google Scholar] [CrossRef]
- Lautenschlaeger, M.P.; Prifling, B.; Kellers, B.; Weinmiller, J.; Danner, T.; Schmidt, V. Understanding electrolyte filling of lithium-ion battery electrodes on the pore scale using the lattice Boltzmann method. Batter. Supercaps 2022, 5, e202200090. [Google Scholar] [CrossRef]
- Lake, L.W. Enhanced Oil Recovery; Prentice Hall: Hoboken, NJ, USA, 2010. [Google Scholar]
- Berg, S.; Ott, H. Stability of CO2-brine immiscible displacement. Int. J. Greenh. Gas Control 2013, 11, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, H.S.; Or, D.; Liu, Y.; Lai, C.Y. Suppressing viscous fingering in structured porous media. Proc. Natl. Acad. Sci. USA 2018, 115, 4833–4838. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, T.; Jiang, F.; Christensen, K.T. Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone. Adv. Water Resour. 2016, 95, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.L. Fractal dimension and its measurement method. J. Northeast For. Univ. 2004, 032, 116–119. [Google Scholar]
- Lenormand, R.; Touboul, E.; Zarcone, C. Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 1988, 189, 165–187. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Mart, O.; Wietsma, T.M.; Grate, J.W.; Warner, M.G. Influence of Viscous and Capillary Forces on Immiscible Fluid Displacement: Pore-Scale Experimental Study in a Water-Wet Micromodel Demonstrating Viscous and Capillary Fingering. Energy Fuels 2011, 25, 3493–3505. [Google Scholar] [CrossRef]
- Zheng, X.L.; Mahabadi, N.; Yun, T.S.; Jang, J. Effect of capillary and viscous force on CO2 saturation and invasion pattern in the microfluidic chip. J. Geophys. Res. Solid Earth 2017, 122, 1634–1647. [Google Scholar] [CrossRef]
- Singh, K.; Jung, M.; Brinkmann, M.; Seemann, R. Capillary-Dominated Fluid Displacement in Porous Media. Annu. Rev. Fluid Mech. 2019, 51, 429–449. [Google Scholar] [CrossRef]
- Zhao, B.; MacMinn, C.W.; Juanes, R. Wettability control on multiphase flow in patterned microfluidics. Proc. Natl. Acad. Sci. USA 2016, 113, 10251–10256. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Brinkmann, M.; Seemann, R.; Hiller, T.; Herminghaus, S. Wettability controls slow immiscible displacement through local interfacial instabilities. Phys. Rev. Fluids 2016, 1, 7. [Google Scholar] [CrossRef]
- Lei, W.H.; Lu, X.K.; Liu, F.L.; Wang, M. Non-monotonic wettability effects on displacement in heterogeneous porous media. J. Fluid Mech. 2022, 942, R5. [Google Scholar] [CrossRef]
- Golmohammadi, S.; Ding, Y.; Schlueter, S.; Kuechler, M.; Reuter, D. Impact of Wettability and Gravity on Fluid Displacement and Trapping in Representative 2D Micromodels of Porous Media (2D Sand Analogs). Water Resour. Res. 2021, 57, 10. [Google Scholar] [CrossRef]
- Hu, R.; Zhou, C.X.; Wu, D.S.; Yang, Z.B. Roughness Control on Multiphase Flow in Rock Fractures. Geophys. Res. Lett. 2019, 46, 12002–12011. [Google Scholar] [CrossRef]
- Lu, N.B.; Browne, C.A.; Amchin, D.B. Controlling capillary fingering using pore size gradients in disordered media. Phys. Rev. Fluids 2019, 4, 78. [Google Scholar] [CrossRef] [Green Version]
- Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann Method for Complex Flows. Annu. Rev. Fluid Mech. 2010, 42, 439–472. [Google Scholar] [CrossRef]
- Yin, C.C.; Wang, T.Y.; Che, Z.Z.; Jia, M.; Sun, K. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces. Langmuir 2019, 35, 16201–16209. [Google Scholar] [CrossRef] [PubMed]
- Raabe, D. Overview of the lattice Boltzmann method for nano-and microscale fluid dynamics in materials science and engineering. Model. Simul. Mater. Sci. Eng. 2004, 12, 11–15. [Google Scholar] [CrossRef]
- Chen, H.D.; Kandasamy, S.; Orszag, S. Extended Boltzmann Kinetic Equation for Turbulent Flows. Science 2003, 307, 633–636. [Google Scholar] [CrossRef]
- Afra, B.; Delouei, A.A.; Mostafavi, M.; Tarokh, A. Fluid-structure interaction for the flexible filament’s propulsion hanging in the free stream. J. Mol. Liq. 2021, 323, 114941. [Google Scholar] [CrossRef]
- Jalali, A.; Amiri Delouei, A.; Khorashadizadeh, M.; Golmohammadi, A.M.; Karimnejad, S. Mesoscopic Simulation of Forced Convective Heat Transfer of Carreau-Yasuda Fluid Flow over an Inclined Square: Temperature-dependent Viscosity. J. Appl. Comput. Mech. 2020, 6, 307–319. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Valocchi, A.J. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network. Phys. Fluids 2015, 27, 121776–121840. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Tang, G.H. Non-Newtonian rheology property for two-phase flow on fingering phenomenon in porous media using the lattice Boltzmann method. J. Non-Newton. Fluid Mech. 2016, 229, 86–95. [Google Scholar] [CrossRef]
- Lautenschlaeger, M.P.; Weinmiller, J.; Kellers, B.; Danner, T.; Latz, A. Homogenized lattice Boltzmann model for simulating multi-phase flows in heterogeneous porous media. Adv. Water Resour. 2022, 170, 104320. [Google Scholar] [CrossRef]
- Hu, Y.X.; Patmonoaji, A.; Zhang, C.W. Experimental study on the displacement patterns and the phase diagram of immiscible fluid displacement in three-dimensional porous media. Adv. Water Resour. 2020, 140, 103584. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yin, C.; Wang, J.; Zheng, K.; Zhang, Z.; Tian, Z.; Xiong, Y. Suppressing Viscous Fingering in Porous Media with Wetting Gradient. Materials 2023, 16, 2601. https://doi.org/10.3390/ma16072601
Wang X, Yin C, Wang J, Zheng K, Zhang Z, Tian Z, Xiong Y. Suppressing Viscous Fingering in Porous Media with Wetting Gradient. Materials. 2023; 16(7):2601. https://doi.org/10.3390/ma16072601
Chicago/Turabian StyleWang, Xiongsheng, Cuicui Yin, Juan Wang, Kaihong Zheng, Zhengrong Zhang, Zhuo Tian, and Yongnan Xiong. 2023. "Suppressing Viscous Fingering in Porous Media with Wetting Gradient" Materials 16, no. 7: 2601. https://doi.org/10.3390/ma16072601
APA StyleWang, X., Yin, C., Wang, J., Zheng, K., Zhang, Z., Tian, Z., & Xiong, Y. (2023). Suppressing Viscous Fingering in Porous Media with Wetting Gradient. Materials, 16(7), 2601. https://doi.org/10.3390/ma16072601