In Vitro Degradation of Mg-Doped ZrO2 Bioceramics at the Interface with Xerostom® Saliva Substitute Gel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomaterials Preparation
2.2. In Vitro Biomaterials Stability
2.3. Bulk Density and Apparent Porosity Measurements
2.4. Structural and Morphological Analysis
3. Results and Discussion
3.1. Bulk Density and Apparent Porosity
3.2. Structural Characterization
3.3. FTIR Investigations
3.4. Morphological Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Ghany, O.S.A.; Sherief, A.H. Zirconia based ceramics, some clinical and biological aspects: Review. Future Dent. J. 2016, 2, 55–64. [Google Scholar] [CrossRef]
- Raveendrana, S.; Khanb, M.I.K.; Dhayalanb, A.; Kannan, S. Co-substitutions of iron and manganese in zirconia. Synthesis, structural, magnetic, mechanical and in vitro evaluation. Ceram. Int. 2020, 46, 641–652. [Google Scholar] [CrossRef]
- Tredici, I.G.; Sebastiani, M.; Massimi, F.; Bemporad, E.; Resmini, A.; Merlati, G.; Anselmi-Tamburini, U. Low temperature degradation resistant nanostructured yttria-stabilized zirconia for dental applications. Ceram. Int. 2016, 42, 8190–8197. [Google Scholar] [CrossRef]
- Kargozar, S.; Ramakrishna, S.; Mozafari, M. Chemistry of biomaterials: Future prospects. Curr. Opin. Biomed. Eng. 2019, 10, 181–190. [Google Scholar] [CrossRef]
- Soon, S.; Pingguan-Murphy, B.; Lai, K.W.; Akbar, S.A. Review of zirconia-based bioceramic: Surface modification and cellular response. Ceram. Int. 2016, 42, 12543–12555. [Google Scholar] [CrossRef]
- Ferrari, M.; Vichi, A.; Zarone, F. Zirconia abutments and restorations: From laboratory to clinical investigations. Dent. Mater. 2015, 31, e63–e76. [Google Scholar] [CrossRef]
- Ali, S.A.; Karthigeyan, S.; Deivanai, M.; Mani, R. Zirconia: Properties and applications—A review. Pak. Oral Dent. J. 2014, 34, 177–183. [Google Scholar]
- Chevalier, J.; Gremillard, L. Zirconia ceramics, In Bioceramics and Their Clinical Applications, 1st ed.; Kokubo, T., Ed.; Woodhead Publishing Series in Biomaterials; Abingdon: Cambridge, UK, 2008; pp. 243–265. [Google Scholar]
- Manicone, P.F.; Iommetti, P.R.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826. [Google Scholar] [CrossRef]
- Nguyen, N.Y.; Grelling, N.; Wetteland, C.L.; Rosario, R.; Liu, H. Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms. Sci. Rep. 2018, 8, 16260. [Google Scholar] [CrossRef]
- Muñiz Diaz, R.; Cardoso-Avila, P.E.; Pérez Tavares, J.A.; Patakfalvi, R.; Villa Cruz, V.; Pérez Ladrón de Guevara, H.; Gutiérrez Coronado, O.; Arteaga Garibay, R.I.; Saavedra Arroyo, Q.E.; Marañón-Ruiz, V.F.; et al. Two-Step Triethylamine-Based Synthesis of MgO Nanoparticles and Their Antibacterial Effect against Pathogenic Bacteria. Nanomaterials 2021, 11, 410. [Google Scholar] [CrossRef]
- Makhluf, S.; Dror, R.; Nitzan, Y.; Abramovich, Y.; Jelinek, R.; Gedanken, A. Microwave-Assisted Synthesis of Nanocrystalline MgO and Its Use as a Bacteriocide. Adv. Funct. Mater. 2005, 15, 1708–1715. [Google Scholar] [CrossRef]
- Jin, T.; He, Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart. Res. 2011, 13, 6877–6885. [Google Scholar] [CrossRef]
- Ionescu, R.N.; Totan, A.R.; Imre, M.M.; Țâncu, A.M.C.; Pantea, M.; Butucescu, M.; Farcașiu, A.T. Prosthetic Materials Used for Implant-Supported Restorations and Their Biochemical Oral Interactions: A Narrative Review. Materials 2022, 15, 1016. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yin, C.; Mo, A. Zirconia Based Dental Biomaterials: Structure, Mechanical Properties, Biocompatibility, Surface Modification, and Applications as Implant. Front. Dent. Med. 2021, 2, 689198. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Akagawa, Y.; Nikai, H.; Tsuru, H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J. Prosthet. Dent. 1992, 68, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Sharanraj, V.; Ramesha, C.M.; Kavya, K.; Kumar, V.; Sadashiva, M.; Chandan, B.R.; Naveen Kumar, M. Zirconia: As a biocompatible biomaterial used in dental implants. Adv. Appl. Ceram. 2021, 120, 63–68. [Google Scholar] [CrossRef]
- Kazi, G.A.S.; Yamagiwa, R. Cytotoxicity and biocompatibility of high mol% yttria containing zirconia. Restor. Dent. Endod. 2020, 45, e52. [Google Scholar] [CrossRef]
- Wei, C.; Gong, T.; Pow, E.H.N.; Botelho, M.G. Adhesive and oxidative response of stem cell and pre-osteoblasts on titanium and zirconia surfaces in vitro. J. Investig. Clin. Dent. 2019, 10, e12407. [Google Scholar] [CrossRef]
- Bizo, L.; Sabo, K.; Barábas, R.; Katona, G.; Barbu-Tudoran, L.; Berar, A. Structural, morphological and dissolution properties of ZrO2-based biocomposites for dental applications. Stud. UBB Chem. 2020, 1, 137–148. [Google Scholar] [CrossRef]
- Barabás, R.; Fort, C.I.; Turdean, G.L.; Bizo, L. Influence of HAP on the Morpho-Structural Properties and Corrosion Resistance of ZrO2-Based Composites for Biomedical Applications. Crystals 2021, 11, 202. [Google Scholar] [CrossRef]
- Berar, A.; Mureșan-Pop, M.; Barbu-Tudoran, L.; Barabás, R.; Bizo, L. High-temperature solid-state synthesis of Mg-doped ZrO2: Structural, optical and morphological characterization. Stud. UBB Chem. 2020, 2, 221–232. [Google Scholar] [CrossRef]
- Martín, M.; Marín, A.; López, M.; Liñán, O.; Alvarenga, F.; Büchser, D.; Cerezo, L. Products based on olive oil, betaine, and xylitol in the post-radiotherapy xerostomia. Rep. Pract. Oncol. Radiother. 2017, 22, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Ship, J.A.; McCutcheon, J.A.; Spivakovsky, S.; Kerr, A.R. Safety and effectiveness of topical dry mouth products containing olive oil, betaine, and xylitol in reducing xerostomia for polypharmacy-induced dry mouth. J. Oral Rehabil. 2007, 34, 724–732. [Google Scholar] [CrossRef]
- Nath, S.; Baja, S.; Basu, B. Microwave-Sintered MgO-Doped Zirconia with Improved Mechanical and Tribological Properties. Int. J. Appl. Ceram. Technol. 2008, 5, 49–62. [Google Scholar] [CrossRef]
- Hadjicharalambous, C.; Prymak, O.; Loza, K.; Buyakov, A.; Kulkov, S.; Chatzinikolaidou, M. Effect of Porosity of Alumina and Zirconia Ceramics toward Pre-Osteoblast Response. Front. Bioeng. Biotechnol. Sec. Biomater. 2015, 3, 175. [Google Scholar] [CrossRef]
- Song, Y.G.; Cho, I.H. Characteristics and osteogenic effect of zirconia porous scaffold coated with β-TCP/HA. J. Adv. Prosthodont. 2014, 6, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, P.F.; Mesquita-Guimarães, J.; Galárraga-Vinueza, M.E.; Souza, J.C.M.; Silva, F.S.; Fredel, M.C.; Boccaccini, A.R.; Detsch, R.; Henriques, B. In-vitro mechanical and biological evaluation of novel zirconia reinforced bioglass scaffolds for bone repair. J. Mech. Behav. Biomed. Mater. 2021, 114, 104164. [Google Scholar] [CrossRef]
- Grandfield, K.; Palmquist, A.; Ericson, F.; Malmstrom, J.; Emanuelsson, L.; Slotte, C.; Adolfsson, E.; Botton, G.A.; Thomsen, P.; Engqvist, H. Bone response to free-form fabricated hydroxyapatite and zirconia scaffolds: A transmission electron microscopy study in the human maxilla. Clin. Implant Dent. Relat. Res. 2012, 14, 461–469. [Google Scholar] [CrossRef]
- Resende-Gonçalves, C.I.; Sampaio, N.; Moreira, J.; Carvalho, O.; Caramês, J.; Manzanares-Céspedes, M.C.; Silva, F.; Henriques, B.; Souza, J. Porous Zirconia Blocks for Bone Repair: An Integrative Review on Biological and Mechanical Outcomes. Ceramics 2022, 5, 161–172. [Google Scholar] [CrossRef]
- Sollazzo, V.; Pezzetti, F.; Scarano, A.; Piattelli, A.; Bignozzi, C.A.; Massari, L.; Brunelli, G.; Carinci, F. Zirconium oxide coating improves implant osseointegration in vivo. Dent. Mater. 2008, 24, 357–361. [Google Scholar] [CrossRef]
- Langhoff, J.D.; Voelter, K.; Scharnweber, D.; Schnabelrauch, M.; Schlottig, F.; Hefti, T.; Kalchofner, K.; Nuss, K.; von Rechenberg, B. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: A study in sheep. Int. J. Oral Maxillofac. Surg. 2008, 37, 1125–1132. [Google Scholar] [CrossRef]
- Whittle, K.R.; Ashbrook, S.E.; Lumpkin, G.R. Neutron diffraction and MAS NMR of cesium tungstate defect pyrochlores. J. Solid State Chem. 2006, 179, 512–521. [Google Scholar] [CrossRef]
- Lutterotti, L.; Scardi, P. Simultaneous Structure and Size-Strain Refinement by the Rietveld Method. J. Appl. Crystallogr. 1990, 23, 246–252. [Google Scholar] [CrossRef]
- Wyckoff, R.W.G. Crystal Structures, 2nd ed.; Interscience Publishers: New York, NY, USA, 1963; Volume 1, pp. 85–237. [Google Scholar]
- Shannon, R.D.; Prewitt, C.T. Effective Ionic Radii in Oxides and Fluorides. Acta Cryst. 1969, B25, 925–946. [Google Scholar] [CrossRef]
- Shukla, S.; Seal, S. Mechanisms of room temperature tetragonal phase stabilization in zirconia. Int. Mater. Rev. 2005, 50, 45–64. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Gawande, M.B.; Branco, P.S.; Parghi, K.; Shrikhande, J.J.; Pandey, R.K.; Ghumman, C.A.A.; Bundaleski, N.; Teodoro, O.M.N.D.; Jayaram, R.V. Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications. Catal. Sci. Technol. 2011, 1, 1653–1664. [Google Scholar] [CrossRef]
- Saha, S.K.; Pramanik, P. Aqueous sol–gel synthesis of powders in the ZrO2–SiO2 system using zirconium formate and tetraethoxysilane. J. Non-Cryst. Solids 1993, 159, 31–37. [Google Scholar] [CrossRef]
- Adamczyk, A. The Study of the Influence of ZrO2 Precursor Type and the Temperature of Annealing on the Crystallization of the Tetragonal Polymorph of ZrO2 in Zirconia-Silica Gels. Gels 2022, 8, 724. [Google Scholar] [CrossRef]
- Lee, S.W.; Condrate Sr, R.A. The infrared and Raman spectra of SiO2–ZrO2 glasses prepared by a sol–gel process. J. Mater. Sci. 1988, 23, 2951–2959. [Google Scholar] [CrossRef]
- Chandradass, J.; Balasubramanian, M.; Kim, K.H. Solution phase synthesis of t-ZrO2 nanoparticles in ZrO2–SiO2 mixed oxide. J. Exp. Nanosci. 2011, 6, 38–48. [Google Scholar] [CrossRef]
- Hu, L.; Wang, C.-A.; Huang, Y. Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. J. Mater. Sci. 2010, 45, 3242–3246. [Google Scholar] [CrossRef]
- Hadjicharalambous, C.; Mygdali, E.; Prymak, O.; Buyakov, A.; Kulkov, S.; Chatzinikolaidou, M. Proliferation and osteogenic response of MC3T3-E1 pre-osteoblastic cells on porous zirconia ceramics stabilized with magnesia or yttria. J. Biomed. Mater. Res. A 2015, 103A, 3612–3624. [Google Scholar] [CrossRef] [PubMed]
- Tosiriwatanapong, T.; Singhatanadgit, W. Zirconia-Based Biomaterials for Hard Tissue Reconstruction. Bone Tissue Regen. Insights 2018, 9. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kuwajima, H.; Masaki, T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ion. 1981, 3, 489–493. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Schubert, H.; Frey, F. Stability of Y-TZP During Hydrothermal Treatment: Neutron Experiments and Stability Considerations. J. Eur. Ceram. Soc. 2005, 25, 1597–1602. [Google Scholar] [CrossRef]
- Lepistö, T.T.; Mantyla, T.A. A Model for the Structural Degradation of Y-TZP Ceramics in Humid Atmosphere. Ceram. Eng. Sci. Proc. 1989, 10, 658–667. [Google Scholar]
- Yoshimura, M.; Noma, T.; Kawabata, K.; Somiya, S. Role of H2O on the Degradation Process of Y-TZP. J. Mater. Sci. Lett. 1987, 6, 465–467. [Google Scholar] [CrossRef]
Composition | Formula | Apparent Porosity (%) | SD | Bulk Density (g/cm3) | SD | DScherrer * (nm) | |
---|---|---|---|---|---|---|---|
Pre- immersion | Post- immersion | ||||||
x = 0.05 | Zr0.95Mg0.05O2 | 22.00 | 0.032 | 4.48 | 0.122 | 39.76 | 45.44 |
x = 0.1 | Zr0.9Mg0.1O2 | 33.83 | 0.030 | 3.61 | 0.271 | 48.65 | 36.09 |
x = 0.15 | Zr0.85Mg0.15O2 | 32.74 | 0.037 | 3.60 | 0.098 | 55.02 | 41.64 |
x = 0.2 | Zr0.80Mg0.2O2 | 32.79 | 0.037 | 3.03 | 0.343 | 49.10 | 52.63 |
x = 0.25 | Zr0.75Mg0.25O2 | 37.64 | 0.003 | 3.31 | 0.261 | 53.54 | 54.84 |
x = 0.3 | Zr0.7Mg0.3O2 | 40.06 | 0.036 | 3.46 | 0.190 | 53.29 | 51.95 |
Composition | Pre-Immersion | Post-Immersion |
---|---|---|
x = 0.05 | 3458, 1627, 1430 727, 577, 514, 526, 503, 449, 422 | 3451, 1627, 1573, 1398 725, 580, 526, 517, 503, 462, 452, 421, 414, 407 |
x = 0.1 | 3500, 1621, 1428, 499, 454 | 3451, 1619, 1397, 504, 459 |
x = 0.15 | 3453, 2927, 1629, 1441, 1375, 461, 445 | 3418, 2925, 1620, 1451, 1398, 1127, 1049, 466, 447 |
x = 0.2 | 3696, 2922, 1629, 1428, 508, 470, 441, 430, 412 | 3418, 2930, 1625, 1398, 1107, 1048, 505, 476, 442, 427, 417, 410 |
x = 0.25 | 3478, 1629, 1453, 457, 442, 421 | 3433, 1625, 1418, 1049, 484, 460, 442, 434, 426, 416 |
x = 0.3 | 3697, 3440, 1629, 1544, 457, | 3697, 3414, 1629, 1422, 1161, 1050, 452 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bizo, L.; Mureşan-Pop, M.; Barabás, R.; Barbu-Tudoran, L.; Berar, A. In Vitro Degradation of Mg-Doped ZrO2 Bioceramics at the Interface with Xerostom® Saliva Substitute Gel. Materials 2023, 16, 2680. https://doi.org/10.3390/ma16072680
Bizo L, Mureşan-Pop M, Barabás R, Barbu-Tudoran L, Berar A. In Vitro Degradation of Mg-Doped ZrO2 Bioceramics at the Interface with Xerostom® Saliva Substitute Gel. Materials. 2023; 16(7):2680. https://doi.org/10.3390/ma16072680
Chicago/Turabian StyleBizo, Liliana, Marieta Mureşan-Pop, Réka Barabás, Lucian Barbu-Tudoran, and Antonela Berar. 2023. "In Vitro Degradation of Mg-Doped ZrO2 Bioceramics at the Interface with Xerostom® Saliva Substitute Gel" Materials 16, no. 7: 2680. https://doi.org/10.3390/ma16072680
APA StyleBizo, L., Mureşan-Pop, M., Barabás, R., Barbu-Tudoran, L., & Berar, A. (2023). In Vitro Degradation of Mg-Doped ZrO2 Bioceramics at the Interface with Xerostom® Saliva Substitute Gel. Materials, 16(7), 2680. https://doi.org/10.3390/ma16072680