Fracturing Behaviors and Mechanism of Serial Coal Pillar Specimens with Different Strength
Abstract
:1. Introduction
2. Experimental Test Setup
2.1. Experimental Specimens
2.2. Experimental Testing System
2.2.1. Uniaxial Loading System
2.2.2. AE Monitoring System
2.2.3. Electrical Resistance Testing System
2.2.4. Strain Testing System
2.3. Experimental Scheme
3. Experimental Results
3.1. Stress-AE Energy-Electrical Resistivity Response
3.2. AE Events Distribution
3.3. Local Strain Develops
4. Numerical Simulation
4.1. Establishment of Numerical Model
4.2. Stress Distribution Pattern
4.3. Crack Evolution
4.4. Local Displacement
5. Discussion
5.1. Schematic Model of Serial Coal Pillar Specimens
5.2. Fracturing Evolution Analysis
5.3. Progressive Fracturing Mechanism
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Symbols
UCS | Uniaxial compressive strength |
E | Elastic modulus |
AE | Acoustic emission |
H | Height of single coal pillar specimen |
r | Radius of coal pillar specimen |
a | Length and width of loading plate |
h | Height of loading plate |
a1 | Length and width of insulation board |
a2 | Length and width of copper electrode |
U | Voltage of insulation resistance testing system |
h1 | Height of insulation board |
h2 | Height of copper electrode |
ρ | Electrical resistivity of a single coal pillar specimen |
R | Electrical resistance of a single coal pillar specimen |
S | Effective cross-sectional area of a single coal pillar specimen |
ρp | Electrical resistivity of serial coal pillar specimens |
Rp | Electrical resistance of serial coal pillar specimens |
Sp | Effective cross-sectional area of serial coal pillar specimens |
Hp | Total height of serial coal pillar specimens |
Ru, Rb | Electrical resistance of upper and bottom coal pillar specimen |
CS | Compressive strain |
TS | Tensile strain |
C1 | Bottom coal pillar specimen |
C2 | Upper coal pillar specimen |
Su, Sb | Two springs simplified for the top and bottom specimens |
Fu, Fb | Bearing load of upper and bottom coal pillar specimen |
uu, ub | Vertical displacement of upper and bottom coal pillar specimen |
Fs | Global bearing load of serial coal pillar specimens |
us | Total displacement of serial coal pillar specimens |
f’s(us) | Secant modulus of serial coal pillar specimens |
f’u(uu), f’b(ub) | Secant modulus of upper and bottom coal pillars |
References
- Zhao, T.B.; Guo, W.Y.; Tan, Y.L.; Yin, Y.C.; Cai, L.S.; Pan, J.F. Case studies of rock bursts under complicated geological conditions during multi-seam mining at a depth of 800 m. Rock Mech. Rock Eng. 2018, 51, 1539–1564. [Google Scholar] [CrossRef]
- Qu, Q.D.; Xu, J.L.; Wu, R.L.; Qin, W.; Hu, G.Z. Three-zone characteristion of coupled strata and gas behaviour in multi-seam mining. Int. J. Rock Mech. Min. 2015, 78, 91–98. [Google Scholar] [CrossRef]
- Mark, C.; Chase, F.E.; Pappas, D.M. Analysis of multiple seam stability. In Proceedings of the 26th International Conference on Ground Control in Mining, Morgantown, WV, USA, 31 July–2 August 2007; pp. 1–8. [Google Scholar]
- Gauna, M.; Mark, C. Unanticipated multiple seam stresses from pillar systems behaving as pseudo gob–case histories. Int. J. Min. Sci. Technol. 2017, 27, 131–137. [Google Scholar] [CrossRef]
- Al Heib, M.; Duval, C.; Theoleyre, F.; Watelet, J.M.; Gombert, P. Analysis of the historical collapse of an abandoned underground chalk mine in 1961 in Clamart (Paris, France). Bull. Eng. Geol. Environ. 2015, 74, 1001–1018. [Google Scholar] [CrossRef]
- Hauquin, T.; Gunzburger, Y.; Deck, O. Predicting pillar burst by an explicit modelling of kinetic energy. Int. J. Rock Mech. Min. 2018, 107, 159–171. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.K.; Kushwaha, A.; Sinha, A. Stability of the parting between coal pillar workings in level contiguous seams during depillaring. Int. J. Rock Mech. Min. 2012, 55, 1–14. [Google Scholar] [CrossRef]
- Deutsch, C.V.; Wilde, B.J. Modeling multiple coal seams using signed distance functions and global kriging. Int. J. Coal Geol. 2013, 112, 87–93. [Google Scholar] [CrossRef]
- Szott, W.; Słota-Valim, M.; Gołąbek, A.; Sowiżdżał, K.; Łętkowski, P. Numerical studies of improved methane drainage technologies by stimulating coal seams in multi-seam mining layouts. Int. J. Rock Mech. Min. 2018, 108, 157–168. [Google Scholar] [CrossRef]
- Wang, J.A.; Shang, X.C.; Ma, H.T. Investigation of catastrophic ground collapse in Xingtai gypsum mines in China. Int. J. Rock Mech. Min. 2008, 45, 1480–1499. [Google Scholar] [CrossRef]
- Bai, J.W.; Feng, G.R.; Zhang, M.; Qi, T.Y.; Jiang, H.N.; Zhang, Y.J.; Guo, J.; Guo, F.; Kang, L.X. Influence of upper-bottom pillar mining on temporal and spatial evolution of stress in rock strata around middle residual coal seam. J. China Coal Soc. 2016, 41, 1896–1904. (In Chinese) [Google Scholar] [CrossRef]
- Yu, B.; Huo, B.J. Structure characteristics of multi-layer superimposed coal pillar and its influence on strata behavior for underlying coal seam. Chin. J. Rock Mech. Eng. 2017, 36 (Suppl. 1), 3374–3381. (In Chinese) [Google Scholar] [CrossRef]
- Yang, J.X.; Liu, C.Y.; Yu, B.; Wu, F.F. Roof structure of close distance coal strata in multi-gob condition and its effects. Acta Geodyn. Geromater. 2014, 11, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Sloan, S.W.; Huang, M.L.; Tang, C.A. Numerical study of failure mechanism of serial and parallel rock pillars. Rock Mech. Rock Eng. 2011, 44, 179–198. [Google Scholar] [CrossRef]
- Castellanza, R.; Gerolymatou, E.; Nova, R. An attempt to predict the failure time of abandoned mine pillars. Rock Mech. Rock Eng. 2008, 41, 377. [Google Scholar] [CrossRef]
- Poulsen, B.A.; Shen, B.T. Subsidence risk assessment of decommissioned bord-and-pillar collieries. Int. J. Rock Mech. Min. 2013, 60, 312–320. [Google Scholar] [CrossRef]
- Salmi, E.F.; Nazem, M.; Karakus, M. The effect of rock mass gradual deterioration on the mechanism of post-mining subsidence over shallow abandoned coal mines. Int. J. Rock Mech. Min. 2017, 91, 59–71. [Google Scholar] [CrossRef]
- Suchowerska, A.M.; Carter, J.P.; Merifield, R.S. Horizontal stress under supercritical longwall panels. Int. J. Rock Mech. Min. 2014, 70, 240–251. [Google Scholar] [CrossRef]
- Zhu, D.F.; Tu, S.H.; Tu, H.S.; Yang, Z.Q. Mechanisms of support failure and prevention measures under double-layer room mining gobs-a case study: Shigetai coal mine. Int. J. Min. Sci. Technol. 2019, 29, 955–962. [Google Scholar] [CrossRef]
- Chen, Z.H.; Tang, C.A.; Huang, R.Q. A double rock sample model for rockbursts. Int. J. Rock Mech. Min. 1997, 34, 991–1000. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lam, K.C.; Au, K.; Tang, C.A.; Zhu, W.C.; Yang, T.H. Analytical and numerical study on the pillar rockbursts mechanism. Rock Mech. Rock Eng. 2006, 39, 445–467. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Wang, W.M.; Wang, L.H.; Dai, C.Q. Compression–shear strength criterion of coal–rock combination model considering interface effect. Tunn. Undergr. Space Technol. 2015, 47, 193–199. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Chen, L.; Zhao, Y.; Zhao, T.B.; Cai, X.; Du, X.M. Experimental and numerical investigation on the bearing and failure mechanism of multiple pillars under overburden. Rock Mech. Rock Eng. 2017, 50, 995–1010. [Google Scholar] [CrossRef]
- Porathur, J.L.; Karekal, S.; Palroy, P. Web pillar design approach for Highwall Mining extraction. Int. J. Rock Mech. Min. 2013, 64, 73–83. [Google Scholar] [CrossRef]
- Liakas, S.; O’Sullivan, C.; Saroglou, C. Influence of heterogeneity on rock strength and stiffness using DEM and the parallel bond model. J. Rock Mech. Min. Geotech. Eng. 2017, 9, 575–584. [Google Scholar] [CrossRef]
- Behnia, M.; Shahraki, A.R.; Moradian, Z. Selecting equivalent strength for intact rocks in heterogeneous rock masses. Geotech. Geol. Eng. 2018, 36, 1975–1989. [Google Scholar] [CrossRef]
- Greco, O.D.; Ferrero, A.; Pella, D. Behaviour of laboratory specimens composed by different rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1992, 29, A147. [Google Scholar]
- Greco, O.D.; Ferrero, A.M.; Oggeri, C. Experimental and analytical interpretation of the behaviour of laboratory tests on composite specimens. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 1539–1543. [Google Scholar] [CrossRef]
- Mohamed, Z.; Mohamed, K.; Cho, G.C. Uniaxial compressive strength of composite rock material with respect to shale thickness ratio and moisture content. Elec. J. Geotech. Eng. 2008, 13, 1–10. [Google Scholar]
- Tziallas, G.P.; Saroglou, H.; Tsiambaos, G. Determination of mechanical properties of flysch using laboratory methods. Eng. Geol. 2013, 166, 81–89. [Google Scholar] [CrossRef]
- Berisavljević, Z.; Berisavljević, D.; Rakić, D.; Hadži-Nikovic, G.; Radic, Z. Strength of composite flysch samples under uniaxial compression. Bull. Eng. Geol. Environ. 2018, 77, 791–802. [Google Scholar] [CrossRef]
- Lu, C.P.; Dou, L.M.; Liu, B.; Xie, Y.S.; Liu, H.S. Microseismic low-frequency precursor effect of bursting failure of coal and rock. J. Appl. Geophys. 2012, 79, 55–63. [Google Scholar] [CrossRef]
- Huang, B.X.; Liu, J.W. The effect of loading rate on the behavior of samples composed of coal and rock. Int. J. Rock Mech. Min. 2013, 61, 23–30. [Google Scholar] [CrossRef]
- Liu, J.; Wang, E.Y.; Song, D.Z.; Wang, S.H.; Niu, Y. Effect of rock strength on failure mode and mechanical behavior of composite samples. Arab. J. Geosci. 2015, 8, 4527–4539. [Google Scholar] [CrossRef]
- Galvin, J.M. Ground Engineering-Principles and Practices for Underground Coal Mining; Springer: Berlin, Germany, 2016; pp. 121–179. [Google Scholar]
- Bai, J.W.; Feng, G.R.; Wang, Z.H.; Wang, S.Y.; Qi, T.Y.; Wang, P.F. Experimental investigations on the progressive failure characteristics of a sandwiched coal-rock system under uniaxial compression. Appl. Sci. Basel. 2019, 9, 1195. [Google Scholar] [CrossRef] [Green Version]
- Ulusay, R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer: New York, NY, USA, 2014. [Google Scholar]
- Tang, C.A. Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. 1997, 34, 249–261. [Google Scholar] [CrossRef]
- Neverov, A.A. Geomechanical substantiation of modified room-work in flat thick deposits with ore drawing under overhang. J. Min. Sci. 2012, 48, 1016–1024. [Google Scholar] [CrossRef]
- Wang, J.J.; Ma, D.; Li, Z.H.; Huang, Y.L.; Du, F. Experimental investigation of damage evolution and failure criterion on hollow cylindrical rock samples with different bore diameters. Eng. Fract. Mech. 2022, 260, 108182. [Google Scholar] [CrossRef]
- Wang, X.R.; Wang, E.Y.; Liu, X.F.; Zhou, X. Failure mechanism of fractured rock and associated acoustic behaviors under different loading rates. Eng. Fract. Mech. 2021, 247, 107674. [Google Scholar] [CrossRef]
- Lü, C.; Sun, Q. Electrical resistivity evolution and brittle failure of sandstone after exposure to different temperatures. Rock Mech. Rock Eng. 2018, 51, 639–645. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, S.Y.; Xue, L. Electrical resistivity variation in uniaxial rock compression. Arab. J. Geosci. 2015, 8, 1869–1880. [Google Scholar] [CrossRef]
- Chen, G.Y.; Lin, Y.M. Stress–strain–electrical resistance effects and associated state equations for uniaxial rock compression. Int. J. Rock Mech. Min. 2004, 41, 223–236. [Google Scholar] [CrossRef]
- Chen, P.; Wang, E.Y.; Chen, X.X.; Liu, Z.T.; Li, Z.H.; Shen, R.X. Regularity and mechanism of coal resistivity response with different conductive characteristics in complete stress–strain process. Int. J. Min. Sci. Technol. 2015, 25, 779–786. [Google Scholar] [CrossRef]
- Yang, S.Q.; Tian, W.L.; Ranjith, P.G. Experimental investigation on deformation failure characteristics of crystalline marble under triaxial cyclic loading. Rock Mech. Rock Eng. 2017, 50, 2871–2889. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Z.J.; Jiang, Y.J.; Huang, H. Experimental study on mechanical and acoustic emission characteristics of rock-like material under non-uniformly distributed loads. Rock Mech. Rock Eng. 2018, 51, 729–745. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhang, L.Y.; Wang, W.J.; Pu, C.Z.; Wan, W.; Tang, J.Z. Cracking and stress–strain behavior of rock-like material containing two flaws under uniaxial compression. Rock Mech. Rock Eng. 2016, 49, 665–2687. [Google Scholar] [CrossRef]
- Kong. X.G.; Wang, E.Y.; He, X.Q.; Zhao, E.L.; Zhao, C. Mechanical characteristics and dynamic damage evolution mechanism of coal samples in compressive loading experiments. Eng. Fract. Mech. 2019, 210, 160–169. [Google Scholar] [CrossRef]
Type | Diameter/mm | Height/mm | Mass/g | Density/ (g/cm3) | Initial Resistivity/ (MΩ·m) | Peak Force/KN | Uniaxial Compressive Strength/MPa |
---|---|---|---|---|---|---|---|
I | 49.94 | 99.93 | 253.21 | 1.29359 | 2.45 | 20.11 | 10.24 |
II | 49.96 | 100.15 | 187.61 | 0.95559 | 0.96 | 14.96 | 7.62 |
Serial Coal Pillar Specimen | Pillar Type | UCS/MPa |
---|---|---|
Upper Coal Specimen | I | 10.24 |
Bottom Coal Specimen | II | 7.62 |
Meso-Mechanical Parameters | Values |
---|---|
Particle minimum radius, (mm) | 0.5 |
Particle radius ratio | 1.5 |
The density of the particle, (kg/m3) | 2500 |
The damp of the particle | 0.7 |
Friction coefficient of particles | 0.577 |
Bond modulus of specimen C1, (GPa) | 0.43 |
Bond modulus of specimen C2, (GPa) | 0.4 |
Bond tensile strength of specimen C1, (MPa) | 3.75 |
Bond tensile strength of specimen C2, (MPa) | 4.7 |
Bond cohesion of specimen C1, (MPa) | 3.75 |
Bond cohesion of specimen C2, (MPa) | 4.7 |
Timestep | Upper Specimen | Lower Specimen | Serial Coal Pillar Specimens | ||||||
---|---|---|---|---|---|---|---|---|---|
Total Cracks | Tensile Cracks | Shear Cracks | Total Cracks | Tensile Cracks | Shear Cracks | Total Cracks | Tensile Cracks | Shear Cracks | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15,000 | 7 | 6 | 1 | 4 | 3 | 1 | 11 | 9 | 2 |
18,000 | 19 | 18 | 1 | 35 | 26 | 9 | 54 | 44 | 10 |
20,400 | 24 | 22 | 2 | 89 | 58 | 31 | 113 | 80 | 33 |
20,800 | 46 | 43 | 3 | 205 | 150 | 55 | 251 | 193 | 58 |
21,200 | 48 | 45 | 3 | 290 | 219 | 71 | 338 | 264 | 74 |
21,600 | 48 | 45 | 3 | 391 | 299 | 92 | 439 | 344 | 95 |
22,000 | 48 | 45 | 3 | 578 | 434 | 144 | 626 | 479 | 147 |
22,400 | 50 | 47 | 3 | 835 | 645 | 190 | 885 | 692 | 193 |
22,800 | 53 | 50 | 3 | 1089 | 869 | 220 | 1142 | 919 | 223 |
23,200 | 53 | 50 | 3 | 1309 | 1057 | 252 | 1362 | 1107 | 255 |
23,487 | 53 | 50 | 3 | 1422 | 1156 | 266 | 1457 | 1206 | 269 |
Stage | Descriptions | Unbalanced Deformation Characteristics | Key Deformation Element |
---|---|---|---|
I | Stage I was from O to As for serial coal pillar specimens | were 0 at the beginning of stage I. . . were both increasing nonlinearly. . . | Upper and bottom coal pillar specimens |
II | Stage II was from As to Bs for serial coal pillar specimens | . . were both constant. . . . | Upper and bottom coal pillar specimens |
III | Stage III was from Bs to Cs for serial coal pillar specimens | . . was basically equal to the one at stage II. was decreasing gradually. declined to 0 when the peak stress of serial coal pillar specimens was observed. . . | Bottom coal pillar specimen with lower UCS |
IV | Stage IV was from Cs to Es for serial coal pillar specimens | . . was more than 0. were met at the points of Db’ and Du. . . | Bottom coal pillar specimen with lower UCS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Cao, G.; Bai, J.; Wang, S.; Feng, G.; Shi, X.; Wang, K.; Zhu, C. Fracturing Behaviors and Mechanism of Serial Coal Pillar Specimens with Different Strength. Materials 2023, 16, 2690. https://doi.org/10.3390/ma16072690
Song C, Cao G, Bai J, Wang S, Feng G, Shi X, Wang K, Zhu C. Fracturing Behaviors and Mechanism of Serial Coal Pillar Specimens with Different Strength. Materials. 2023; 16(7):2690. https://doi.org/10.3390/ma16072690
Chicago/Turabian StyleSong, Cheng, Guangming Cao, Jinwen Bai, Shanyong Wang, Guorui Feng, Xudong Shi, Kai Wang, and Chun Zhu. 2023. "Fracturing Behaviors and Mechanism of Serial Coal Pillar Specimens with Different Strength" Materials 16, no. 7: 2690. https://doi.org/10.3390/ma16072690
APA StyleSong, C., Cao, G., Bai, J., Wang, S., Feng, G., Shi, X., Wang, K., & Zhu, C. (2023). Fracturing Behaviors and Mechanism of Serial Coal Pillar Specimens with Different Strength. Materials, 16(7), 2690. https://doi.org/10.3390/ma16072690