The Mechanism of Dendrite Formation in a Solid-State Transformation of High Aluminum Fe-Al Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructural Comparison of Fe-Al Alloys with Different Compositions and Heat Treatments
3.2. In Situ Observation of the Fe-59.9Al Alloy under Different Cooling Rates
3.3. Orientation Characteristics of FeAl Dendrites
4. Discussion
4.1. Nucleation Mechanism of the FeAl Precipitates
4.2. Morphological Evolution Mechanism of the FeAl Precipitates
4.3. The Expected Formation Conditions of Solid-State Dendrites
- (1)
- Crystallographic conditions: crystallographic similarity, including similar crystal structures, 3D matching, and suitable orientation relationships, which will ensure that the new phase can preferentially precipitate coherently in the interior of the parent grain, which is the primary condition for exhibiting regular dendrite precipitate, while the grain boundary precipitate is almost irregular.
- (2)
- Thermodynamic conditions: appropriatesupersaturation, low interfacial energy, and coherent strain energy as well as elastic interactions to regulate the characteristic evolution of dendritic morphology.
5. Conclusions
- (1)
- The solid-state dendrites exist only on the hypoeutectoid side in high-aluminum Fe-Al alloys, due to the crystallographic similarity of Fe5Al8 and FeAl.
- (2)
- In situ observations by HT-CSLM reveal that proeutectoid FeAl preferentially nucleates at the oxide inclusions during slow cooling, while during rapid cooling, the free surface and lattice defects provide additional driving force for nucleation. The critical radii for generating morphological instability are 1.2 μm and 0.9 μm for slow and rapid cooling, respectively, as obtained from the in situ experiments. The morphology after both slow and rapid cooling exhibits dendrites, while there are differences in size and critical instability radius Rc, which are attributed to the different supersaturation S and the number of protrusions l.
- (3)
- A large number of lattice defects in the parent phase provides an additional driving force for nucleation, leading to nucleation from the interior of parent phase grains based on the orientation relationship {0}Fe5Al8//{10}FeAl, <11>Fe5Al8//<11>FeAl. The maximum release of misfit strain energy leads to the growth of the primary arm of the nucleus along <11>{10}. During the rapid cooling process, a large supersaturation is induced in the matrix, driving the aluminum atoms to undergo unstable uphill diffusion and causing variations in the concentration gradient as well as the constitutional undercooling, ultimately leading to morphological instability and the growth of secondary arms.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stoloff, N.S. Iron aluminides: Present status and future prospects. Mater. Sci. Eng. A 1998, 258, 1–14. [Google Scholar] [CrossRef]
- Zamanzade, M.; Barnoush, A.; Motz, C. A Review on the Properties of Iron Aluminide Intermetallics. Crystals 2016, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Palm, M.; Stein, F.; Dehm, G. Iron Aluminides. Annu. Rev. Mater. Res. 2019, 49, 297–326. [Google Scholar] [CrossRef]
- Palm, M. Fe–Al materials for structural applications at high temperatures: Current research at MPIE. Int. J. Mater. Res. 2009, 100, 277–287. [Google Scholar] [CrossRef]
- Stein, F.; Vogel, S.C.; Eumann, M.; Palm, M. Determination of the crystal structure of the ɛ phase in the Fe–Al system by high-temperature neutron diffraction. Intermetallics 2010, 18, 150–156. [Google Scholar] [CrossRef]
- Vogel, S.C.; Stein, F.; Palm, M. Investigation of the ε phase in the Fe–Al system by high-temperature neutron diffraction. Appl. Phys. A 2010, 99, 607–611. [Google Scholar] [CrossRef]
- Han, K.; Ohnuma, I.; Kainuma, R. Experimental determination of phase equilibria of Al-rich portion in the Al–Fe binary system. J. Alloy. Compd. 2016, 668, 97–106. [Google Scholar] [CrossRef]
- Amirkhanyan, M.S.L. Thermodynamic Properties of Intermetallics. Ph.D. Thesis, Technische Universität Bergakademie Freiberg, Saxony, Germany, 2017. [Google Scholar]
- Tiller, W.A.; Jackson, K.A.; Rutter, J.W.; Chalmers, B. The redistribution of solute atoms during the solidification of metals. Acta Metall. 1953, 1, 428–437. [Google Scholar] [CrossRef]
- Mullins, W.W.; Sekerka, R.F. Morphological Stability of a Particle Growing by Diffusion or Heat Flow. J. Appl. Phys. 1963, 34, 323–329. [Google Scholar] [CrossRef]
- Mullins, W.W.; Sekerka, R.F. Stability of a Planar Interface During Solidification of a Dilute Binary Alloy. J. Appl. Phys. 1964, 35, 444–451. [Google Scholar] [CrossRef]
- Thompson, M.E.; Su, C.S.; Voorhees, P.W. The equilibrium shape of a misfitting precipitate. Acta Metall. Et Mater. 1994, 42, 2107–2122. [Google Scholar] [CrossRef] [Green Version]
- Cha, P.-R.; Yeon, D.-H.; Chung, S.-H. Phase-field study for the splitting mechanism of coherent misfitting precipitates in anisotropic elastic media. Scr. Mater. 2005, 52, 1241–1245. [Google Scholar] [CrossRef] [Green Version]
- Nabarro, F. The influence of elastic strain on the shape of particles segregating in an alloy. Proc. Phys. Soc. 2002, 52, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Eshelby, J.D.; Read, W.T.; Shockley, W. Anisotropic elasticity with applications to dislocation theory. Acta Metall. 1953, 1, 251–259. [Google Scholar] [CrossRef]
- Husain, S.W.; Ahmed, M.S.; Qamar, I. Dendritic morphology observed in the solid-state precipitation in binary alloys. Metall. Mater. Trans. A 1999, 30, 1529–1534. [Google Scholar] [CrossRef]
- Masoumi, F.; Shahriari, D.; Jahazi, M.; Cormier, J.; Devaux, A. Kinetics and Mechanisms of γ′ Reprecipitation in a Ni-based Superalloy. Sci. Rep. 2016, 6, 28650. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Pan, H.; Cheng, J.; Xiao, L.; Guo, J.; Ji, H. Dendrite evolution and quantitative characterization of γ′ precipitates in a powder metallurgy Ni-based superalloy by different cooling rates. J. Alloy. Compd. 2022, 918, 165677. [Google Scholar] [CrossRef]
- Yoo, Y.S. Morphological instability of spherical γ′ precipitates in a nickel base superalloy. Scr. Mater. 2005, 53, 81–85. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, A.; Guo, Z.; Wang, X.; Yang, J.; Zou, J. Growth behavior of γ′ phase in a powder metallurgy nickel-based superalloy under interrupted cooling process. J. Mater. Sci. 2019, 54, 2680–2689. [Google Scholar] [CrossRef]
- Fan, X.; Guo, Z.; Wang, X.; Yang, J.; Zou, J. Morphology evolution of γ′ precipitates in a powder metallurgy Ni-base superalloy. Mater. Charact. 2018, 139, 382–389. [Google Scholar] [CrossRef]
- Henry, M.F.; Yoo, Y.S.; Yoon, D.; Choi, J. The Dendritic Growth of γ’ Precipitates and Grain Boundary Serration in a Model Nickel-Base Superalloy. Met. Mater. Trans. A 1993, 24, 1733–1743. [Google Scholar] [CrossRef]
- Ricks, R.A.; Porter, A.J.; Ecob, R.C. The growth of γ′ precipitates in nickel-base superalloys. Acta Metall. 1983, 31, 43–53. [Google Scholar] [CrossRef]
- Yeom, S.J.; Yoon, D.Y.; Henry, M.F. The Morphological Changes of γ′ Precipitates in a Ni-8Al (wt pct) Alloy during their Coarsening. Metall. Mater. Trans. A 1993, 24, 1975–1981. [Google Scholar] [CrossRef]
- Xu, L.; Tian, C.G.; Cui, C.Y.; Gu, Y.F.; Sun, X.F. Morphology evolution of unstable γ′ in Ni–Co based superalloy. Mater. Sci. Technol. 2014, 30, 962–967. [Google Scholar] [CrossRef]
- Malcolm, J.A.; Purdy, G.R. The morphology and morphological stability of large precipitates formed in CuZn and CuZnSn. Trans. Metall. Soc. AIME 1967, 239, 1391–1399. [Google Scholar]
- Kwon, J.; Thuinet, L.; Avettand-Fènoël, M.N.; Legris, A.; Besson, R. Point defects and formation driving forces of complex metallic alloys: Atomic-scale study of Al4Cu9. Intermetallics 2014, 46, 250–258. [Google Scholar] [CrossRef]
- Misra, S.; Pahari, D.; Giri, S.; Wang, F.; Puravankara, S.; Jana, P.P. The γ-brass type Cu–rich complex intermetallic phase Cu41Sn11: Structure and electrochemical study. Solid State Sci. 2021, 119, 106682. [Google Scholar] [CrossRef]
- Malik, Z.; Kneidinger, F.; Michor, H.; Puchegger, S.; Bauer, E.; Giester, G.; Rogl, P. Physical properties of non-centrosymmetric Ni2Zn11. Intermetallics 2013, 38, 88–91. [Google Scholar] [CrossRef]
- Gourdon, O.; Gout, D.; Williams, D.J.; Proffen, T.; Hobbs, S.; Miller, G.J. Atomic Distributions in the γ-Brass Structure of the Cu−Zn System: A Structural and Theoretical Study. Inorg. Chem. 2007, 46, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Zhenghong, G. Kinetics and Crystallography of Solid State Transformations; Shang Hai Jiao Tong University: Shanghai, China, 2019; pp. 100–121. [Google Scholar]
- Phelan, D. In-situ studies of phase transformations in iron alloys. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 2002. [Google Scholar]
- Yin, H.; Emi, T.; Shibata, H. Morphological instability ofδ-ferrite/γ-austenite interphase boundary in low carbon steels. Acta Mater. 1999, 47, 1523–1535. [Google Scholar] [CrossRef]
- Castro, M.L.; Fornaro, O. Formation of dendritic precipitates in the beta phase of Cu-based alloys. J. Mater. Sci. 2009, 44, 5829–5835. [Google Scholar] [CrossRef]
- Kelly, P.M.; Zhang, M.X. Edge-to-edge matching—A new approach to the morphology and crystallography of precipitates. Mater. Forum 1999, 23, 41–62. [Google Scholar]
- Tang, J.; Hu, W.; Yang, J.; Wu, Y. Anharmonic effects on B2–FeAl(110) surface: A molecular dynamics study. Appl. Surf. Sci. 2007, 254, 1475–1481. [Google Scholar] [CrossRef]
- Lee, D.N.; Han, H.N. Orientation Relationships between Directionally Grown Precipitates and their Parent Phases in Steels. Mater. Sci. Forum 2012, 706, 61–68. [Google Scholar] [CrossRef]
- Scherf, A.; Kauffmann, A.; Kauffmann-Weiss, S.; Scherer, T.; Li, X.; Stein, F.; Heilmaier, M. Orientation relationship of eutectoid FeAl and FeAl2. J. Appl. Crystallogr. 2016, 49, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Stephens, D.E.; Purdy, G.R. Equilibrium properties of the γ-β interface in Cu-Zn alloys. Acta Metall. 1975, 23, 1343–1352. [Google Scholar] [CrossRef]
- Khachaturyan, A. Theory of Structural Transformations in Solids; Dover Publications: Mineola, NY, USA, 1983. [Google Scholar]
- Maartende, J.; Wei, C.; Thomas, A.; Anubhav, J.; Randy, N.; Anthony, G.; Marcel, S.; Chaitanya, K.A.; van der Zwaag, S.; Jose, J.P.; et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2015, 2, 150009. [Google Scholar] [CrossRef] [Green Version]
- Ranganathan, S.; Ostoja-Starzewski, M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef] [Green Version]
- Born, M. On the stability of crystal lattices. I. Math. Proc. Camb. Philos. Soc. 1940, 36, 160–172. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Gaillac, R.; Pullumbi, P.; Coudert, F.-X. ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 2016, 28, 275201. [Google Scholar] [CrossRef] [Green Version]
- Yoo, Y.S.; Yoon, D.Y.; Henry, M.F. The effect of elastic misfit strain on the morphological evolution of γ’-precipitates in a model Ni-base superalloy. Met. Mater. 1995, 1, 47–61. [Google Scholar] [CrossRef]
- Bocquet, J.L.; Brebec, G.; Limoge, Y. Chapter 7—Diffusion in Metals and Alloys. In Physical Metallurgy, 4th ed.; Cahn, R.W., Haasen, P., Eds.; North-Holland: Oxford, UK, 1996; pp. 535–668. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, M.; Hao, X.-C.; Zha, X.-D.; Gao, M.; Ma, Y.-C.; Liu, K. Precipitation of dendritic M23C6 carbides in alloy 690 during continuous cooling. J. Alloy. Compd. 2021, 851, 156694. [Google Scholar] [CrossRef]
- Sietsma, J.; Zwaag, S.V.D. A concise model for mixed-mode phase transformations in the solid state. Acta Mater. 2004, 52, 4143–4152. [Google Scholar] [CrossRef]
Alloy System | Parent Phase | Precipitate | Mismatch (%) | ||||
---|---|---|---|---|---|---|---|
Phase | Structure Type | Lattice Parameter (Å) | Phase | Structure Type | Lattice Parameter (Å) | ||
Cu-Al [27] | Cu3Al (β) | A2 | 2.9564 | Cu9Al4 (γ2) | D83 | 8.7068 | 1.8 |
Cu-Sn [28] | Cu3Sn (γ) | D03 | 6.0605 | Cu41Sn11 (δ) | - | 17.980 | 1.1 |
Ni-Zn [29] | NiZn (β) | B2 | 2.9143 | Ni2Zn11 (γ) | D82 | 8.9228 | 2.0 |
Cu-Zn [30] | CuZn (β) | A2 | 2.9967 | Cu5Zn8 (γ) | D82 | 8.8690 | 1.3 |
Fe-Al [5] | Fe5Al8 | D82 | 8.9757 | FeAl | B2 | 2.9720 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhang, Y.; Zhang, A.; Stein, F.; Xu, Z.; Tang, Z.; Ren, D.; Zeng, J. The Mechanism of Dendrite Formation in a Solid-State Transformation of High Aluminum Fe-Al Alloys. Materials 2023, 16, 2691. https://doi.org/10.3390/ma16072691
Yang H, Zhang Y, Zhang A, Stein F, Xu Z, Tang Z, Ren D, Zeng J. The Mechanism of Dendrite Formation in a Solid-State Transformation of High Aluminum Fe-Al Alloys. Materials. 2023; 16(7):2691. https://doi.org/10.3390/ma16072691
Chicago/Turabian StyleYang, Haodong, Yifan Zhang, An Zhang, Frank Stein, Zhengbing Xu, Zhichao Tang, Dangjing Ren, and Jianmin Zeng. 2023. "The Mechanism of Dendrite Formation in a Solid-State Transformation of High Aluminum Fe-Al Alloys" Materials 16, no. 7: 2691. https://doi.org/10.3390/ma16072691
APA StyleYang, H., Zhang, Y., Zhang, A., Stein, F., Xu, Z., Tang, Z., Ren, D., & Zeng, J. (2023). The Mechanism of Dendrite Formation in a Solid-State Transformation of High Aluminum Fe-Al Alloys. Materials, 16(7), 2691. https://doi.org/10.3390/ma16072691