Preparation and Properties of (Cu, Ni) Co-Doped ZnO Nanoparticle-Reinforced Cu-Ni Nanocomposite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of (Cu, Ni)-ZnO Nanoparticles
2.2. Preparation of Cu-Ni-ZnO Nanocomposite Coatings
2.3. Characterization Techniques
3. Results
3.1. Phase Structure
3.2. Surface Morphology
3.3. Microhardness
3.4. Corrosion Resistance
3.5. Photocatalytic Performance
4. Conclusions
- (1)
- Cu-Ni-ZnO nanocomposite coatings had diffraction peaks on (111), (200), and (220) crystal planes with a wurtzite structure. The surface morphology of the nanocomposite coatings was cauliflower-like, being more uniform and dense. The microhardness, corrosion resistance, and photocatalytic performance of the nanocomposite coatings were obviously superior to those of the Cu-Ni alloy coating.
- (2)
- The addition of (Cu, Ni)-ZnO improved the performance of the nanocomposite coatings as a whole, and the various properties reached the peak at 6 g/L. At this concentration, the minimum crystallite size was 15.5 nm and the microhardness was 658 HV. The corrosion resistance of the coatings was the best with the minimum corrosion current density of 2.36 × 10−6 A/cm2 and the maximum Rct of 8.7 kΩ ∙ cm2. Meanwhile, the decolorization rate of the RhB solution reached the highest rate of 28.73% after 5 h of UV irradiation.
- (3)
- With the increase in (Cu, Ni)-ZnO additions, the concentration of nanoparticles in the nanocomposite coatings increased gradually. The increased concentration of nanoparticles in the coatings favored a finer, more uniform and denser microstructure, which can further improve the corrosion resistance and photocatalytic degradation performance of the coatings. However, further increment in the concentration of (Cu, Ni)-ZnO nanoparticles in the plating bath resulted in an overall performance decrement, which was due to the reduction in the nanoparticles in the coatings and possible agglomeration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Zhang, D.; Liu, Z.; Li, Z.; Du, C.; Dong, C. Materials science: Share corrosion data. Nature 2015, 527, 441–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, T.; Xu, D.; Zhang, P.; Li, Y.; Lindenberger, A.L. Microbiologically influenced corrosion and its impact on metals and other materials. Microbiol. Miner. Met. Mater. Environ. 2015, 25, 383–408. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, F.; Liu, H.; Zhang, T.; Li, Y.; Li, C.; Xia, W.; Wang, H.; Liu, H. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment. Bioelectrochemistry 2019, 129, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Li, S.; Li, L.; Zuo, L.; Ran, X.; Qu, Y.; Zhu, B. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater. Corros. Sci. 2017, 118, 12–23. [Google Scholar] [CrossRef]
- Jin, Y.; Li, Z.; Zhou, E.; Lekbach, Y.; Xu, D.; Jiang, S.; Wang, F. Sharing riboflavin as an electron shuttle enhances the corrosivity of a mixed consortium of Shewanella oneidensis and Bacillus licheniformis against 316L stainless steel. Electrochim. Acta 2019, 316, 93–104. [Google Scholar] [CrossRef]
- Lu, X.; Liu, Y.W.; Zhao, H.T.; Pan, C.; Wang, Z.Y. Corrosion behavior of copper in extremely harsh marine atmosphere in Nansha Islands, China. Trans. Nonferrous Met. Soc. China 2021, 31, 703–714. [Google Scholar] [CrossRef]
- Pingale, A.D.; Owhal, A.; Katarkar, A.S.; Belgamwar, S.U.; Rathore, J.S. Recent researches on Cu-Ni alloy matrix composites through electrodeposition and powder metallurgy methods: A review. Mater. Today Proc. 2021, 47, 3301–3308. [Google Scholar] [CrossRef]
- Ferro, P.; Bonollo, F.; Tiziani, A. Laser welding of copper–nickel alloys: A numerical and experimental analysis. Sci. Technol. Weld. Join. 2005, 10, 299–310. [Google Scholar] [CrossRef]
- He, C.L.; Huo, J.X.; Fang, B.W.; Shi, J.M.; Su, M.; Feng, H.D.; Ma, G.F.; Wang, J.M. Microstructure and corrosion resistance of Cu-Ni alloy electroplating coatings. J. Shenyang Univ. 2020, 32, 287–293, 306. [Google Scholar] [CrossRef]
- Deo, Y.; Guha, S.; Sarkar, K.; Mohanta, P.; Pradhan, D.; Mondal, A. Electrodeposited Ni-Cu alloy coatings on mild steel for enhanced corrosion properties. Appl. Surf. Sci. 2020, 515, 146078. [Google Scholar] [CrossRef]
- Geramipour, F.; Mousavi Khoei, S.M.; Shooshtari Gugtapeh, H. Effect of shaped waveform on structure and electrochemical corrosion behavior of pulse electrodeposited NiCu alloy coatings. Surf. Coat. Technol. 2021, 424, 127643. [Google Scholar] [CrossRef]
- Alizadeh, M.; Safaei, H. Characterization of Ni-Cu matrix, Al2O3 reinforced nano-composite coatings prepared by electrodeposition. Appl. Surf. Sci. 2018, 456, 195–203. [Google Scholar] [CrossRef]
- Li, B.; Mei, T.; Li, D.; Du, S.; Zhang, W. Structural and corrosion behavior of Ni-Cu and Ni-Cu/ZrO2 composite coating electrodeposited from sulphate-citrate bath at low Cu concentration with additives. J. Alloys Compd. 2019, 804, 192–201. [Google Scholar] [CrossRef]
- Li, B.; Mei, T.; Li, D.; Du, S. Ultrasonic-assisted electrodeposition of Ni-Cu/TiN composite coating from sulphate-citrate bath: Structural and electrochemical properties. Ultrason. Sonochem. 2019, 58, 104680. [Google Scholar] [CrossRef] [PubMed]
- Safavi, M.S.; Fathi, M.; Mirzazadeh, S.; Ansarian, A.; Ahadzadeh, I. Perspectives in corrosion-performance of Ni-Cu coatings by adding Y2O3 nanoparticles. Surf. Eng. 2021, 37, 226–235. [Google Scholar] [CrossRef]
- Pingale, A.D.; Belgamwar, S.U.; Rathore, J.S. Effect of graphene nanoplatelets addition on the mechanical, tribological and corrosion properties of Cu-Ni/Gr nanocomposite coatings by electro-co-deposition method. Trans. Indian Inst. Met. 2020, 73, 99–107. [Google Scholar] [CrossRef]
- Pascariu, P.; Tudose, I.V.; Suchea, M.; Koudoumas, E.; Fifere, N.; Airinei, A. Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl. Surf. Sci. 2018, 448, 481–488. [Google Scholar] [CrossRef]
- Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017, 249, 37–52. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Saadi, H.; Benzarti, Z.; Sanguino, P.; Pina, J.; Abdelmoula, N.; de Melo, J.S.S. Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications. J. Mater. Sci. Mater. Electron. 2023, 34, 116. [Google Scholar] [CrossRef]
- Saadi, H.; Benzarti, Z.; Rhouma, F.I.H.; Sanguino, P.; Guermazi, S.; Khirouni, K.; Vieira, M.T. Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications. J. Mater. Sci. Mater. Electron. 2021, 32, 1536–1556. [Google Scholar] [CrossRef]
- Zheng, Z.Q.; Yao, J.D.; Wang, B.; Yang, G.W. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep. 2015, 5, 11070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, Z.; Huang, B.; Ma, Y.; Liu, Y.; Qin, X.; Zhang, X.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030. [Google Scholar] [CrossRef]
- Banerjee, P.; Lee, W.J.; Bae, K.R.; Lee, S.B.; Rubloff, G.W. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films. J. Appl. Phys. 2010, 108, 043504. [Google Scholar] [CrossRef] [Green Version]
- Priya, R.; Sahay, P.; Saxena, N.; Rajput, P.; Chawla, V.; Sharma, R.; Sinha, O.P.; Krishna, R. Systematic study of Ni, Cu co-doped ZnO nanoparticles for UV photodetector application. J. Mater. Sci. Mater. Electron. 2021, 32, 2011–2025. [Google Scholar] [CrossRef]
- Alsaad, A.M.; Ahmad, A.A.; Al-Bataineh, Q.M.; Bani-Salameh, A.A.; Abdullah, H.S.; Qattan, I.A.; Albataineh, Z.M.; Telfah, A.D. Optical, structural, and crystal defects characterizations of dip synthesized (Fe-Ni) co-doped ZnO thin films. Materials 2020, 13, 1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.; Jha, R. Transition metal (Co, Mn) co-doped ZnO nanoparticles: Effect on structural and optical properties. J. Alloys Compd. 2017, 698, 532–538. [Google Scholar] [CrossRef]
- Cheng, C.; Xu, G.; Zhang, H.; Luo, Y. Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism. Mater. Lett. 2008, 62, 1617–1620. [Google Scholar] [CrossRef]
- Guermat, N.; Daranfed, W.; Bouchama, I.; Bouarissa, N. Investigation of structural, morphological, optical and electrical properties of Co/Ni co-doped ZnO thin films. J. Mol. Struct. 2021, 1225, 129134. [Google Scholar] [CrossRef]
- Banu Bahşi, Z.; Oral, A.Y. Effects of Mn and Cu doping on the microstructures and optical properties of sol-gel derived ZnO thin films. Opt. Mater. 2007, 29, 672–678. [Google Scholar] [CrossRef]
- Ahn, K.S.; Deutsch, T.; Yan, Y.; Jiang, C.S.; Perkins, C.L.; Turner, J.; Al Jassim, M. Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. J. Appl. Phys. 2007, 102, 023517. [Google Scholar] [CrossRef]
- Sonawane, Y.S.; Kanade, K.G.; Kale, B.B.; Aiyer, R.C. Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles. Mater. Res. Bull. 2008, 43, 2719–2726. [Google Scholar] [CrossRef]
- Senol, S.D.; Arda, L. The effects of Ni/Cu co-doped ZnO nanorods: Structural and optoelectronic study. J. Mater. Sci. Mater. Electron. 2022, 33, 20740–20755. [Google Scholar] [CrossRef]
- Anbuselvan, D.; Muthukumaran, S. Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt. Mater. 2015, 42, 124–131. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Muthukumaran, S. Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt. Mater. 2014, 37, 671–678. [Google Scholar] [CrossRef]
- Yang, J.; Sun Yu, H.X.; Zhang, J.L.; Chi, P.J.; He, C.L. Preparation and photocatalytic performance of Cu/Ni-doped ZnO nanocomposite. Liaoning Chem. Ind. 2020, 50, 1741–1744. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, H.; Xu, L.; Zhao, J.; Bian, J.; Luo, Y.; Liu, Y.; Li, W.; Wu, G.; Du, G. Cu related doublets green band emission in ZnO: Cu thin films. J. Appl. Phys. 2010, 108, 113507. [Google Scholar] [CrossRef]
- Kumar, S.; Asokan, K.; Singh, R.K.; Chatterjee, S.; Kanjilal, D.; Ghosh, A.K. Investigations on structural and optical properties of ZnO and ZnO: Co nanoparticles under dense electronic excitations. RSC Adv. 2014, 4, 62123–62131. [Google Scholar] [CrossRef]
- Scherrer, P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Phys. Kl. 1918, 2, 98–100. [Google Scholar]
- Sadoun, A.M.; Mohammed, M.M.; Fathy, A.; El Kady, O.A. Effect of Al2O3 addition on hardness and wear behavior of Cu–Al2O3 electro-less coated Ag nanocomposite. J. Mater. Res. Technol. 2020, 9, 5024–5033. [Google Scholar] [CrossRef]
- Gyftou, P.; Pavlatou, E.A.; Spyrellis, N. Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites. Appl. Surf. Sci. 2008, 254, 5910–5916. [Google Scholar] [CrossRef]
- Li, B.; Du, S.; Mei, T. Pulse electrodepsoited Ni-Cu/TiN-ZrO2 nanocomposite coating: Microstructural and electrochemical properties. Mater. Res. Express 2019, 6, 096433. [Google Scholar] [CrossRef]
- Safavi, M.S.; Tanhaei, M.; Ahmadipour, M.F.; Adli, R.G.; Mahdavi, S.; Walsh, F.C. Electrodeposited Ni-Co alloy-particle composite coatings: A comprehensive review. Surf. Coat. Technol. 2020, 382, 125153. [Google Scholar] [CrossRef]
- Burkert, A.; Klapper, H.; Lehmann, J. Novel strategies for assessing the pitting corrosion resistance of stainless steel surfaces. Mater. Corros. 2013, 64, 675–682. [Google Scholar] [CrossRef]
- Safavi, M.S.; Babaei, F.; Ansarian, A.; Ahadzadeh, I. Incorporation of Y2O3 nanoparticles and glycerol as an appropriate approach for corrosion resistance improvement of Ni-Fe alloy coatings. Ceram. Int. 2019, 45, 10951–10960. [Google Scholar] [CrossRef]
- Chen, F.; Ying, J.; Wang, Y.; Du, S.; Liu, Z.; Huang, Q. Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 2016, 96, 836–842. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, D. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 2008, 483, 148–152. [Google Scholar] [CrossRef]
- Luo, P.; McDonald, D.; Xu, W.; Palanisamy, S.; Dargusch, M.; Xia, K. A modified Hall–Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing. Scr. Mater. 2012, 66, 785–788. [Google Scholar] [CrossRef]
- Gül, H.; Kılıç, F.; Aslan, S.; Alp, A.; Akbulut, H. Characteristics of electro-co-deposited Ni-Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings. Wear 2009, 267, 976–990. [Google Scholar] [CrossRef]
- Hamid, Z.A.; El Etre, A.; Fareed, M. Performance of Ni-Cu-ZrO2 nanocomposite coatings fabricated by electrodeposition technique. Anti-Corros. Methods Mater. 2017, 64, 315–325. [Google Scholar] [CrossRef]
- Safavi, M.S.; Rasooli, A. Ni-P-TiO2 nanocomposite coatings with uniformly dispersed Ni3Ti intermetallics: Effects of current density and post heat treatment. Surf. Coat. Technol. 2019, 372, 252–259. [Google Scholar] [CrossRef]
- Hasannejad, H.; Shahrabi, T.; Jafarian, M. Synthesis and properties of high corrosion resistant Ni-cerium oxide nano-composite coating. Mater. Corros. 2013, 64, 1104–1113. [Google Scholar] [CrossRef]
Composition | Concentration | Parameters | Range |
---|---|---|---|
CuSO4·5H2O | 20 g/L | Temperature | 45 °C |
NiSO4·6H2O | 85 g/L | Current density | 25 mA·cm−2 |
C6H5O7Na3·2H2O | 75 g/L | Deposition time | 45 min |
C12H25SO4Na | 0.2 g/L | pH | 7 |
(Cu, Ni)-ZnO | 2–8 g/L | stirring rate | 300 rpm |
Concentration/(g/L) | Icorr/(A ∙ cm−2) | Ecorr/V | Epit/V |
---|---|---|---|
Substrate | 2.73 × 10−6 | −0.779 | −0.466 |
0 | 1.29 × 10−5 | −0.677 | −0.222 |
2 | 7.41 × 10−6 | −0.664 | −0.183 |
4 | 7.22 × 10−6 | −0.658 | −0.178 |
6 | 2.36 × 10−6 | −0.301 | −0.098 |
8 | 8.75 × 10−6 | −0.421 | −0.177 |
Concentration /(g/L) | Rs /(Ω·cm2) | Q1 /(S·cm−2·s−n) | n | Rpore /(kΩ·cm2) | Q2 /(S·cm−2·s−n) | n | Rct /(kΩ·cm2) |
---|---|---|---|---|---|---|---|
Al substrate | 10.45 | 9.96 × 10−5 | 0.84 | 2.36 | 9.29 × 10−4 | 0.98 | 2.89 |
0 | 12.26 | 5.79 × 10−5 | 0.91 | 3.63 | 2.58 × 10−6 | 0.60 | 4.42 |
2 | 8.99 | 8.93 × 10−5 | 0.94 | 4.91 | 4.52 × 10−4 | 0.93 | 2.53 |
4 | 15.77 | 6.80 × 10−4 | 0.92 | 2.91 | 4.18 × 10−4 | 0.90 | 6.51 |
6 | 11.45 | 6.58 × 10−4 | 0.91 | 4.43 | 1.13 × 10−5 | 1 | 8.70 |
8 | 13.25 | 6.58 × 10−4 | 0.90 | 3.97 | 1.24 × 10−4 | 0.98 | 6.26 |
Radiation time/h | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Cu-Ni | 0.51705 | 0.50481 | 0.50005 | 0.49029 | 0.47829 | 0.47136 |
2 g/L | 0.51705 | 0.50228 | 0.48429 | 0.47530 | 0.45872 | 0.44662 |
4 g/L | 0.51705 | 0.50235 | 0.46503 | 0.45332 | 0.41467 | 0.39682 |
6 g/L | 0.51705 | 0.50028 | 0.47136 | 0.42156 | 0.38779 | 0.36850 |
8 g/L | 0.51705 | 0.50235 | 0.47348 | 0.46065 | 0.39378 | 0.37269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.; He, C.; Yang, J.; Sunyu, H.; Ling, Y.; Zhang, J.; Song, G. Preparation and Properties of (Cu, Ni) Co-Doped ZnO Nanoparticle-Reinforced Cu-Ni Nanocomposite Coatings. Materials 2023, 16, 2746. https://doi.org/10.3390/ma16072746
Tan H, He C, Yang J, Sunyu H, Ling Y, Zhang J, Song G. Preparation and Properties of (Cu, Ni) Co-Doped ZnO Nanoparticle-Reinforced Cu-Ni Nanocomposite Coatings. Materials. 2023; 16(7):2746. https://doi.org/10.3390/ma16072746
Chicago/Turabian StyleTan, Haifeng, Chunlin He, Jie Yang, Haixuan Sunyu, Yunhe Ling, Jinlin Zhang, and Guihong Song. 2023. "Preparation and Properties of (Cu, Ni) Co-Doped ZnO Nanoparticle-Reinforced Cu-Ni Nanocomposite Coatings" Materials 16, no. 7: 2746. https://doi.org/10.3390/ma16072746
APA StyleTan, H., He, C., Yang, J., Sunyu, H., Ling, Y., Zhang, J., & Song, G. (2023). Preparation and Properties of (Cu, Ni) Co-Doped ZnO Nanoparticle-Reinforced Cu-Ni Nanocomposite Coatings. Materials, 16(7), 2746. https://doi.org/10.3390/ma16072746